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Abstract

In this paper we introduce a n-way sensitivity analysis for Gaussian Bayesian net-
works where we study the joint effect of variations in a set of similar parameters.
Our aim is to determine the sensitivity of the model when the parameters that de-
scribe the quantitative part are given by the structure of the graph. Therefore, with
this analysis we study the effect of uncertainty about the regression coefficients and
the conditional variances of variables with their parents given in the graph.

If a regression coefficient between two variables, Xi and its parent Xj , is different
from zero, there exists an arc connecting Xj with Xi. So, the study of variations
in these parameters leads us to compare different dependence structures of the
network, adding or removing arcs. This can be useful to determine the sensitivity of
the network to variations in the qualitative part of the model, given by the graph.

The methodology proposed is implemented with an example.

Key words: Gaussian Bayesian networks, Sensitivity analysis, Kullback-Leibler
divergence
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Introduction

Probabilistic networks are graphical models of interactions between a set of
variables where the joint probability distribution can be described in graphical
terms.

This model consists of two parts: the qualitative and the quantitative part.
The qualitative part is given by a graph useful to define dependences and in-
dependencies among variables. The graph shows us the set of variables of
the model at nodes, and the presence/absence of edges represents depen-
dence/independence between variables. The qualitative part of the model is
related with the quantitative part. In the quantitative part, it is necessary to
determine the set of parameters that describes the probability distribution of
each variable, given its parents, to compute the joint probability distribution
of the model.

Probabilistic networks have become an increasingly popular paradigm for rea-
soning under uncertainty situations, addressing such tasks as diagnosis, pre-
diction, decision making, classification and data mining [1].

Bayesian networks (BNs) are an important subclass of probabilistic networks.
In this subclass, the qualitative part is given by a directed acyclic graph
(DAG), where the dependence structure is represented with arcs. Then, a
BN is a probabilistic graphical model of causal interactions (although this re-
striction is not strictly necessary to have arcs at the graph). Moreover, in BNs
the joint probability distribution can be factorized as the product of a set of
conditional probability distributions, as can be seen in Section 1.

Building a BN is a difficult task, because it requires to determine the quantita-
tive and the qualitative part of the network. Experts knowledge is important
to fix the dependence structure between the variables of the network and to
specify a large set of parameters. In this process, it is possible to work with
a database of cases, nevertheless the experience and knowledge of experts is
also necessary. As a consequence of the incompleteness of data and partial
knowledge of the domain, the assessments obtained are inevitably inaccurate
[2].

In this work, we focus on a subclass of Bayesian networks known as Gaussian
Bayesian networks (GBNs). The quantitative part of a GBN is given by a
set of univariate normal distributions for the conditional probability distribu-
tion of each variable given its parent in the DAG. Also, the joint probability
distribution of the model is a multivariate normal distribution.

The quantitative part of a GBN, can be built with two kind of parameters: the
means as marginal parameters and the corresponding conditional parameters.
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Then, for each variable Xi, the experts have to give the mean of Xi, the
regression coefficient between Xi and each parent Xj, Xj ∈ Pa(Xi), and the
conditional variances of Xi given its parents in the DAG. This specification is
easier for experts rather than others. Moreover, it is interesting because when
the regression coefficient between two variables is different from zero, there
is an arc between those variables in the DAG. Obviously, when a regression
coefficient is zero there is no arc to join both variables and they are not parent
and child.

Our interest is focused on studying the sensitivity of a GBN defined by the
parameters introduced above. This subject has not been frequently treated
in literature and also, the sensitivity analysis of the model to variations in
these parameters permits the study of variations in the structure of the DAG.
Actually, we can find different dependence structures with absence or presence
of arcs, changing the zeros of the regression coefficients. Moreover, this analysis
can be useful to work with a more simple structure of the network. In Section
3 we apply and discuss this technique.

The sensitivity analysis proposed in this work is a n-way sensitivity analy-
sis. Then, we can study the joint effect of the variation of a set of similar
parameters over the network’s output.

The paper is organized as follows. In Section 1 we present some general con-
cepts and introduce our running example. Section 2 describes the methodology
used to study the sensitivity of the Gaussian model and the obtained results;
this section discusses differences with other analyses developed to study the
sensitivity in probabilistic networks. The second contribution of this paper is
presented in Section 3, with the study of variations in the structure of the
network, as a particular case of the analysis; these variations or changes are a
direct result of disturbing the dependence structure of the model shown in the
DAG. To check the analysis proposed and changes in the network dependence
structure, we introduce an example. The paper ends with some conclusions
and a brief discussion with some directions for further research.

1 General concepts

Throughout this paper, random variables will be denoted by capital letters.
In the multidimensional case, boldface characters will be used.

The definition of a Bayesian network (BN) is given by a pair (G,P), where
G is the DAG with variables at nodes and dependence structure shown by
the presence or absence of arcs between variables. And P a set of conditional
probability distributions having for each random variable the distribution of
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Xi given its parents in the DAG, i.e. , P (Xi | pa(Xi)) ∀ Xi.

The joint probability distribution of a BN can be defined in terms of the
elements of P as the product of the conditional probability distributions P (Xi |
pa(Xi)) ∀ Xi. That is,

P (X) =
nY
i=1

P (Xi | pa(Xi)). (1)

Among others, Bayesian networks have been studied by authors like Pearl [3],
Lauritzen [4] or Jensen and Nielsen [5].

It is common to consider BNs of discrete variables. Nevertheless, it is possi-
ble to work with some continuous distributions. For example, it is possible
to describe a GBN as a BN where the variables of the model are Gaussian
variables. Next, we introduce its formal definition.

Definition 1 (Gaussian Bayesian network (GBN)) A GBN is a BN where
the joint probability density associated with the variables X = {X1, . . . , Xn} is
a multivariate normal distribution N(μ,Σ), given by

f(x) = (2π)−n/2|Σ|−1/2 exp
½
−1
2
(x− μ)0Σ−1(x− μ)

¾
. (2)

μ is the n-dimensional mean vector and Σ is the n × n positive definite co-
variance matrix.

The conditional probability density for Xi (i = 1, .., n) that satisfies (1), is a
univariate normal distribution given by

Xi | pa(Xi) ∼ N

⎛⎝μi + i−1X
j=1

βji(xj − μj), vi

⎞⎠ (3)

where μi is the mean ofXi, βji is the regression coefficient whenXi is regressed
on its parents Xj ∈ Pa(Xj), and vi is the conditional variance of Xi given its
parents. It can be pointed out that βji = 0 if and only if there is no link from
Xj to Xi.

The means of variables, μi, are the elements of the n-dimensional mean vector
μ. To get the covariance matrix Σ with vi and βji we can define D and
B matrices. Let D be a diagonal matrix with the conditional variances vi,
D = diag(v). Let B be a strictly upper triangular matrix with the regression
coefficients βji where Xj is a parent of Xi, for the variables in X with j < i.
Then, the covariance matrix Σ can be computed as
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Σ = [(I−B)−1]TD(I−B)−1 (4)

For details see [6].

It is better to define GBN with the conditional parameters, vi and βji for
all the variables in the model, rather than with the covariance matrix, as we
remark in Section 2. Experts can determine with more accuracy a conditional
parameter of a variable given its parents in the DAG, rather than introducing
a joint parameters involving all the variables of the model.

As the BN is defined, the model can be used to make inferences. This process,
based on the Bayes theorem, is known as probabilistic propagation. And the
first step is to compute an initial network’s output given by the marginal
distribution of any variable of the model running the dependence structure.
Some times, there is a set of variables of the model whose states are known,
that is, a set of observable variables with evidence. We can propagate the
evidence over the network obtaining the posterior network’s output. Variables
with evidence are thus evidential variables, E.

The evidence propagation consists in updating the probability distribution of
a BN given the evidential variables. Then, we can compute the actual distri-
bution of some nonobservable variables of interest as a posterior probability
distribution given the evidence.

Several methods have been proposed in literature to propagate evidence in BNs
(see [7] or [8]). For GBNs, some algorithms are based on methods performed
for discrete BNs. However, most of the algorithms proposed to propagate
the evidence in GBNs are based on computing the conditional probability
distribution of a multivariate normal distribution, given a set of evidential
variables.

After the evidence propagation, the posterior network’s output is given by
the conditional probability distribution of the variables of interest Y, known
the evidential variables E. In GBNs the posterior network’s output is a mul-
tivariate normal distribution given by Y|E = e ∼ N(μY|E=e,ΣY|E=e), with
parameters

μY|E=e = μY+ΣYEΣ
−1
EE(e−μE) and ΣY|E=e = ΣYY−ΣYEΣ

−1
EEΣEY (5)

Next, our working example of a GBN is introduced.

Example 2 The interest of the problem is about the duration of time that a
machine works for. The machine is made up of 7 elements with random time
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to failure, Xi where i = 1, ..., 7, are connected as shown in the DAG of Figure
1.

1X 2X

4X

6X

7X

3X

5X

1 1

1

2 2

2 2

1X 2X

4X

6X

7X

3X

5X

1X 2X

4X

6X

7X

3X

5X

1 1

1

2 2

2 2

Figure 1: DAG of the GBN in Example 1

It is well-known that the time that each element is working is a normal dis-
tribution, being the joint probability distribution of X = {X1, X2, ..., X7} a
multivariate normal distribution.

Parameters given by experts are

μ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

3

2

1

4

5

8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0

0 0 0 2 2 0 0

0 0 0 0 1 0 0

0 0 0 0 0 2 0

0 0 0 0 0 2 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 4 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Computing the prior network’s output, we obtain that X ∼ N(x|μ,Σ) where

μ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

3

2

1

4

5

8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 2 2

0 1 0 2 2 8 8

0 0 2 0 2 4 4

1 2 0 6 4 20 20

0 2 2 4 10 28 28

2 8 4 20 28 97 97

2 8 4 20 28 97 99

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For a specific case, evidence is given by E = {X1 = 2, X2 = 2, X3 = 1}.
Then, after performing the evidence propagation, the posterior network’s out-
put given by the probability distribution of the rest of the variables is Y|E ∼
N(y|μY|E,ΣY|E) with parameters

μY|E =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

−3

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
ΣY|E =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 2 2

0 4 8 8

2 8 21 21

2 8 21 23

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2 Sensitivity in GBN

To build a BN is a difficult task and experts knowledge is necessary to de-
fine the model. As we introduced before, the assessments obtained for the
parameters are usually inaccurate.

Sensitivity analysis is a general technique to evaluate the effects of inaccuracies
in the parameters of the model on the model’s output.

In BNs, the network’s output, given by the marginal distribution of inter-
est variables is computed with the parameter that specifies the quantitative
part of BN. Then, they could be sensitive to the inaccuracies. However, every
parameter will not require the same level of accuracy to reach a good behav-
ior of the network; some parameters will typically have more impact on the
network’s output than others [2].

Sensitivity analysis can be developed varying one parameter and keeping the
rest of network’s parameters fixed. This is known as one-way sensitivity analy-
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sis. With a view to determining the effect of changing a set of parameters
simultaneously, it is possible to develop an n-way sensitivity analysis. In this
case, the analysis shows the joint effect of the variation of a set of parameters
on the network’s output.

In recent years, some sensitivity analysis have been proposed in literature. Au-
thors such as Laskey [9], Coupé, van der Gaag and Habbema [10], Kjærulff and
van der Gaag [11], Bednarsky, Cholewa and Frid [12] and Chan and Darwiche
[13] have already done research in this line. All of these works have succeeded
in developing some useful sensitivity analysis techniques, but all are applied
to discrete Bayesian networks.

The sensitivity in GBN has been studied by Castillo & Kjaerulff [14] and by
Gómez-Villegas, Main & Susi [15,16].

Castillo & Kjaerulff [14] propose a one-way sensitivity analysis, based on [9],
which investigates the impact of small changes in the network parameters.

The present authors, in a previous work [15], introduced a one-way sensitiv-
ity analysis. We propose a methodology based on computing a divergence
measure as authors like Chan & Darwiche [13] do; nevertheless, we work with
a different divergence measure due to the variables considered. To evaluate
variations in the GBN we can compare the network’s output of two differ-
ent models. The original model given by initial parameters assigned to the
model and a perturbed model obtained after changing one of the parameters
of the model. In [16], we have developed an n-way sensitivity analysis to study
the joint effect of a set of parameters on the network’s output with the same
settings.

Our approach differs from that of Castillo and Kjærulff [14] in the fact that
we consider a global sensitivity measure rather than the evaluation of local
aspects of distributions such as location and dispersion.

In the present paper we develop an n-way sensitivity analysis in the line of
[16], but using the conditional specification of the model. Until now, all the
sensitivity analyses proposed for GBNs [14, 15, 16] have studied variations in
parameters of μ and Σ. In this work, we want to study variations in a set of
parameters of μ, D and B, specifically in a set of parameters of D and B,
because μ is the mean vector and it is the same in both cases.

Note that for the specification of a network experts prefer to determine the
regression coefficients for eachXi, βji ∀Xj ∈ Pa(Xi), and the conditional vari-
ance, vi, rather than variances and covariances to build Σ. This specification
of the network is easier to experts because it is clear and completes the de-
pendence structure of the DAG. For that reason, experts can determine more
accurately βji and vi for all the variables in the GBN.
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To develop a n-way sensitivity analysis we have to study a set of variations over
B and D matrices. Remember that B and D are built with all the regression
coefficients and the conditional covariances.

Moreover, with this technique we can study variations of the structure of
the DAG. That is, the zeros in the B matrix reflect absence of arcs between
variables. As we introduced in a previous section, B matrix, is a strictly upper
triangular matrix made up of the regression coefficients of Xi given its parents
Xj ∈ Pa(Xi). Then, it is possible to determine the sensitivity of a GBN to
changes in the structure of the DAG adding or removing an arc of the DAG.
This analysis is introduced in Section 3.

Therefore we deal first with the comparison of the global models previous
to the probabilistic propagation. It will give information about the effect of
the different kind of perturbations in parameters and variables following the
possibility of including evidence further.

In the next subsections we present and justify the usage of Kullback-Leibler
divergence for analysis development and we describe the methodology and the
obtained results for the n-way sensitivity analysis.

2.1 The Kullback-Leibler divergence

The Kullback—Leibler divergence (KL) is a non-symmetric measure that pro-
vides global information of the difference between two probability distributions
(see [17] for more details).

The KL divergence between two probability densities f(w) and f 0(w), defined
over the same domain, is given by

KL(f 0(w)|f(w)) =
Z ∞
−∞

f(w) ln
f(w)

f 0(w)
dw .

With this notation the non-symmetric KL divergence is used, because f can
be considered as a reference density and f 0 as a perturbed one.

For two multivariate normal distributions, the KL divergence is evaluated as
follows:

KL(f 0|f) = 1

2

"
ln
|Σ0|
|Σ| + tr

³
ΣΣ0−1

´
+ (μ0 − μ)T Σ0−1 (μ0 − μ)− dim(X)

#
(6)

where f is the joint probability density of X ∼ N(μ,Σ), and f 0 is the joint
probability density of X0 ∼ N(μ0,Σ0).
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We work with the KL divergence because it lets us study differences between
two probability distributions in a global way rather than comparing their
local features as in other sensitivity analyses. Moreover, we consider a non-
symmetric measure because we propose to compare the original model, as the
reference probability distribution, with somemodels, obtained after perturbing
a set of parameters that describes the network. The original model is given by
the initial parameters assigned to the network and the initial structure of the
DAG, thereby,it is appropriate to consider this model as a reference.

2.2 Methodology and results

As in some previous works cited, the method developed in this work consists
in comparing the network’s outputs under two different models.

We are going to work with the initial network’s output given by the marginal
distribution of any variable. In this paper, we want to determine the set of
parameters that will require a high level of accuracy independently of the
evidence, because the model can be used in different situations with different
cases of evidence.

Two models to be compared are: the original model and the perturbed one.

The original model is given by initial parameters associated with the quanti-
tative part of the GBN, i.e., the initial values assigned by experts to the mean
vector μ and to B and D matrices.

The perturbed model quantifies uncertainty in the parameters by introducing
an additive perturbation. For each perturbed model we consider only one per-
turbation. Perturbations are a δ vector for the mean μ, and ∆B and ∆D for
B and D matrices, respectively. ∆B and ∆D matrices have a specific struc-
ture similar to B and D matrices, respectively. Then, ∆B is a strictly upper
triangular matrix formed with perturbations associated with the regression
coefficients βji. And the matrix ∆D is diagonal, as D, and rejoins variations
associated with the conditional variances vi.

Therefore, for the sensitivity analysis we have three different perturbed mod-
els, each one obtained after adding only one of the perturbations introduced
( δ, ∆B or ∆D).

Computing the initial network’s outputs in both models, the original and the
perturbed model, the joint distributions of the network are obtained.

To compare the joint distribution of the original model with the joint distri-
bution of the perturbed model, we apply the KL divergence. Working with
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three perturbed models, one for each perturbation, we obtain three different
divergences.

With this sensitivity analysis we can evaluate uncertainty about one parameter
like the mean vector or theB andDmatrices, necessary to build the covariance
matrix of the model.

Our next proposition introduces the expressions obtained for the KL diver-
gence with a view to comparing the original model with anyone of the three
perturbed model.

Proposition 3 Let (G,P) be a GBN with parameters μ, B and D, where μ
is the mean vector of variables of the model, and B and D are the matrices of
the regression coefficients and of the conditional variances, respectively, of any
variable given their parents in the DAG. After computing the initial network’s
output given by the joint distribution, the quantitative part of the GBN is
X ∼ N (μ,Σ).

For any set of variations of the parameters μ, B and D, is obtained:

(1) When the perturbation δ is added to the mean vector, we compare the
original model X ∼ N (μ,Σ) with the perturbed model X ∼ N

³
μδ,Σ

´
,

being μδ = μ+δ. The expression obtained for the KL divergence is given
by

KLμ(fμ|f) = 1

2

h
δTΣ−1δ

i
(7)

(2) When the perturbation ∆B is added to B, we compare the original model
X ∼ N (μ,Σ) with the perturbed model X ∼ N

³
μ,Σ∆B

´
, being Σ∆B =

[(I−B−∆B)
−1]

T
D(I−B−∆B)

−1. The expression obtained for the KL
divergence is given by

KLB(fB|f) = 1

2
[trace (ΣK)] (8)

where K =∆BD
−1∆T

B.
(3) When the perturbation ∆D is added to D, we compare the original model

X ∼ N (μ,Σ) with the perturbed model X ∼ N
³
μ,Σ∆D

´
, being Σ∆D =

[(I−B)−1]T (D+∆D) (I − B)−1. The expression obtained for the KL
divergence is given by

KLD(fD|f) = 1

2

"
ln
|D+∆D|
|D| + trace((D+∆D)

−1D)− n

#
(9)
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The expression (9) can be computed with the conditional variances vi, as

KLD(fD|f) = −1
2

"
nP
i=1

Ã
ln
³
1− δi

vi+δi

´
+

δi
vi + δi

!#

where δi is the variation of the conditional variance, vi, of Xi given its parents
in the DAG.

If there exists some inaccuracy in the conditional parameters describing a
GBN, it is possible to carry out the proposed sensitivity analysis using the
expressions given in Proposition 3. The calculation of the KL divergence for
each case, can lead to determine the parameters that must be reviewed to
describe the network more accurately.

When the KL divergence is close to zero, it is possible to conclude that the
network is not sensitive to the proposed variations.

Our methodology can evaluate the perturbation effect with the conditional
representation of GBN. It also makes possible the development of new lines
of research to discover the transmission mechanism of the perturbations over
the variables.

The next examples are used to illustrate the procedure described before. We
also introduce two examples with different assumptions about the parameter’s
uncertainty.

Example 4 Working with the GBN given in Example 2, experts disagree on
the values of some parameters. For example, the mean of X6 could be either
4 or 5 and the mean of X7 could be either 7 or 8. They also offer different
opinions about the regression coefficient between X4 and its parent X2, and
between X5 and its parent X2. Moreover, the conditional variances of X2, X4

and X5 also change. These uncertainties in δ, ∆D and ∆B give

δ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

−1

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∆B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0

0 0 0 −1 −1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∆D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For the sensitivity analysis each perturbed model is obtained after adding a
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perturbation given by δ, ∆B or ∆D to μ , B or D, respectively.

Computing the KL divergence for each perturbed model, we have that

KLμ(fμ|f)= 0.5
KLB(fB|f)= 0.625
KLD(fD|f)= 0.204

Values obtained from the analysis proposed are rather small. Then, we can
conclude that the network is not sensitive to the proposed perturbations.

Now, we introduce an example where more inaccurate parameters are consid-
ered, and the GBN is shown to be sensitive.

Example 5 For the GBN in Example 2, experts now disagree on the values
of more parameters. The uncertainties in δ, ∆D and ∆B give

δ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

1

0

0

−1

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∆B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0

0 0 0 −1 −1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∆D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 2 0

0 0 0 0 0 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Considering each time a different perturbed model and computing the KL di-
vergence to compare both networks we obtain that

KLμ(fμ|f)= 4.375
KLB(fB|f)= 12.625
KLD(fD|f)= 0.579

The obtained divergences are larger than in Example 4. When uncertainty is
about the mean vector and about B matrix we can conclude that the net-
work is sensitive to the proposed perturbations about μ and B. Nevertheless,
for uncertainty about conditional variances in D the KL divergence is not
large. Then, the GBN is not sensitive to the proposed perturbations of D.
Nevertheless, increasing in one unit the perturbations proposed in ∆D the
KLD(fD|f) > 1.
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As can be seen with the uncertainty introduced in this example, not every
inaccurate parameter requires the same level of accuracy to have a satisfac-
tory behavior of the model. Changes about D have less impact on the prior
network’s output than about B or μ.

3 Perturbing the structure of a GBN

As we have introduced before, the regression coefficient ofXi given its parents,
βji, shows the degree of association between Xi and its parents. When βji = 0,
there is no arc in the DAG from Xj to Xi. Therefore, it is possible to study
variations of the structure of the qualitative part of GBN (i.e., the DAG) by
only perturbing B matrix.

If we change the value of any βji to zero, being in the original model different
from zero, then we are removing the arc between variables Xj and Xi. Other-
wise, we can introduce the presence of dependence between two variables Xj

and Xi changing some βji = 0 to βji > 0, then adding an arc in the DAG.

To compare the original model with other with/without some arcs, i.e., in-
troducing new dependences/independencies, it is possible to consider the sen-
sitivity analysis in Section 2 when the perturbed model is given by adding
∆B. That is, the perturbed model when uncertainty is about B. In this case,
we propose the calculation of expression (8). With the obtained result we can
determine when variations in the structure of the DAG perturb or not the
original network’s output.

Sometimes experts do not agree with the qualitative part of the model. Then,
this analysis is necessary to study uncertainty as regards the dependence struc-
ture at the DAG. Moreover, it can be very useful to compare the structure with
another one detecting more dependences between variables. In some cases,
more dependences can form a cycle in the DAG obtaining a structure impos-
sible to build a GBN. Furthermore, with this analysis we can take away some
arcs to work with the simplest structure that gives us the same accuracy than
the original model.

In the next example, we will be looking for the simplest structure of the GBN
introduced in Section 1, with a connected graph.

Example 6 We want to reduce the dependence structure of the GBN intro-
duced in Example 1, keeping the graph connected .

We can consider 4 different situations, corresponding to (a), (b), (c) and (d)
in Figure 2.
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Figure 2: Four different situations removing arcs in the DAG, keeping all the
variables connected

Perturbed model (a) The perturbed GBN in (a) shows variations at B.
The parameters that describe (a) are μ, D and B∆B, where B∆B is given
by:

B∆B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0

0 0 0 0 2 0 0

0 0 0 0 1 0 0

0 0 0 0 0 2 0

0 0 0 0 0 2 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

At B∆B, the arc between X2 and X4 has been removed, being at the
perturbed model β24 = 0.
Computing the KL divergence, with expression (8), the obtained result

is:

KLB(fB|f) = 2

Perturbed model (b) In the GBN shown at Figure 2 (b) the perturbed
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model is obtained with μ, D and B∆B, being B∆B

B∆B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0

0 0 0 2 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 2 0

0 0 0 0 0 2 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In this perturbed model, the arc between X2 and X5 has been removed,
changing to β25 = 0. Computing the expression (8) we obtain that:

KLB(fB|f) = 0.5

Perturbed model (c) The GBN in (c) is given by original parameters, μ
and D, and instead of B, next B∆B matrix:

B∆B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0

0 0 0 2 2 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 2 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Computing expression (8) we obtain that:

KLB(fB|f) = 12

Perturbed model (d) Finally, working the perturbed model (d) with B∆B
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given by:

B∆B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0

0 0 0 2 2 0 0

0 0 0 0 1 0 0

0 0 0 0 0 2 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The KL divergence is:

KLB(fB|f) = 20

With the obtained results, only the perturbed model (b) can replace the
original model given in Example 2. Then, dependence between X2 and X5

can be removed.
As can be shown, it is not possible to remove the arcs between X6 and its

parents, X4 and X5, because perturbed models ((c) and (d)) are so much
different from the original model. Finally, the arc between X2 and X4 could
be removed but the KL divergence is larger than one, and it is better to
consider this arc in the model.

4 Conclusion

This paper proposes a new contribution to the problem of sensitivity analysis
in GBNs. Firstly, making possible the study of uncertainty in the conditional
parameters given by experts. Then, it is possible to study variation of any
mean, regression coefficient between a variable and its parents or conditional
variance of variables in the model given its parents. And secondly, dealing
with an n-way sensitivity analysis that gives a global vision of different kind
of perturbations.

Also the sensitivity analysis of the model to variations of regression coefficients
permits the study of changes of the qualitative part of the GBN, keeping
the ancestral structure of DAG. In that way, we can change the dependence
structure of the model adding or removing arcs between variables.

Finally we have evaluated and discussed the sensitivity analysis proposed with
an example of a GBN.

Further research will focus on the application of the previous results to estab-
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lish, more formally, the relative importance of arcs in a DAG to sensitivity.
Also, the inclusion of evidence over some variables will be studied to evaluate
the effect of conditional parameters perturbations on the network output.
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