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Abstract

In this paper we define a family of centrality measures for directed social net-

works from a game theoretical point of view. We follow the line started with our

previous paper (Gómez et al. 2003) and besides the definition we obtain a char-

acterization of the measures and an additive decomposition in three measures that

can be interpreted in terms of emission, betweeness and reception centralities. Fi-

nally we apply the obtained results to rank the importance of players in a simplified

version of a soccer game.

Key words: Social networks, game theory, centrality, Shapley value.

Classification code: C71.

1 Introduction

A social network is a set of nodes representing people, groups, organizations, enterprises,

etc., that are connected by links showing relations or flows between them.

The social network analysis permits to understand patterns of behavior in a wide and

variated range of situations. From the description of terrorist networks to the examination

1Conrado Manuel, Dpto. de Estad́ıstica e I.O. III. Escuela Universitaria de Estad́ısitca. Universi-

dad Complutense de Madrid. 28040 Madrid (Spain). Ph.: +34913944028, Fax: +3491394064, e-mail:

conrado@estad.ucm.es
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of useful patterns in clickstreams on the www or in e-mail flows, we can include the

spread of HIV in a community, the network of innovators in the European regions or the

vulnerability of an electrical network.

Network analysis study the implications of the restrictions of different actors in their

communications and then in their opportunities of relation. The fewer constraints an actor

face, the more opportunities he/she will have, and thus he will be in a more favorable

position to bargain in exchanges and to intermediate in the bargains of others that need

him, increasing his influence. Then, among other goals, network analysis try to obtain

indices, as objective as possible, to measure hypothetic or not directly observable variables

such that influence, opportunities, better position ...

Social networks analysts consider the closely related concepts of centrality and power

as fundamental properties of individuals, that inform us about aspects as who is who

in the network, who is a leader, who is an intermediary, who is almost isolated, who is

central, who is peripheral. . . Under the network approach it is assumed that this power

is inherently relational.

Social networks researchers have developed several centrality measures. Degree, Close-

ness and Betweenness centralities are without doubt the three most popular ones: Degree

centrality (Shaw, 1954; Nieminen, 1974) focuses on the level of communication activity,

identifying the centrality of a node with its degree. Closeness centrality (Beauchamp,

1965; Sabidussi, 1966) considers the sum of the geodesic distances between a given actor

and the remaining as a decentrality measure in the sense that the lower this sum is, the

greater the centrality. Closeness centrality is, then, a measure of independence in the

communications, in the relations or in the bargaining, and thus, it measure the possibility

to communicate with many others depending on a minimum number of intermediaries.

Betweenness centrality (Bavelas, 1948; Freeman, 1977) emphasizes the value of the com-

munication control: the possibility to intermediate in the relation of others. Under this

approach all possible geodesic paths between pairs of nodes are considered. The centrality

of each actor is the number of such paths in which it lies.

It is intuitively acceptable that the hub in a star is a node with a privileged position

from a relational point of view. All previous measures give to this node the higher

centrality as an actor in this position:

• can communicate directly with all the others,
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• is maximally close to the remaining and

• intermediates in the communication of all pairs of nodes.

Stephenson and Zelen (1989) abandon the geodesic path as structural element in the

definition of centrality, to introduce a measure based on the concept of information as

it is used in the theory of statistical estimation. The defined measure uses a weighted

combination of all paths between pairs of nodes, the weight of each path depending on

the information contained in it.

Bonacich (1972, 1987) suggests another concept of centrality. He proposes to measure

the centrality of different nodes using the eigenvector associated with the largest charac-

teristic eigenvalue of the adjacent matrix. The ranking of web sites as they appear in the

web search engine Google was created from this measure by Brin and Page (1998).

All previous approaches assume that the direct relation between two nodes (whenever

it exists) is symmetrical. Nevertheless it is easy to find situations in which the connections

are directed, having an specific sense: for example in the case of the network of citations

in scientific papers or in the walks across the pages in the www. It seems, then, to be

relevant to define measures of centrality (or to adapt the already existing ones) for these

special situations that can be considered, in fact, more general than the not directed ones.

Contributions in this direction can be found in White and Borgatti (1994), that generalize

the Freeman’s geodesic measures for betweenness in undirected graphs, Tutzauer (2007),

who uses the entropy as a measure of centrality in networks characterized by path-transfer

flow, and Pollner et al. (2008), that introduce an algorithm to calculate the centrality for

cohesive subgroups in directed networks.

In this paper we propose a family of centrality measures for directed graphs using

a game-theoretical point of view. The seminal work in applying game theory to the

topic of centrality for nodes in graphs is due to Grofman and Owen (1982). They used

the framework of games with restrictions in the communication introduced by Myerson

(1977, 1980). In Gómez et al. (2003), we extend previous ideas to obtain a new family

of centrality measures with some appealing properties and the corresponding calculation

methods. Other contributions are closely related with the problem of centrality but ignore

it focusing only in the definition and properties, including characterizations, of allocation

rules for games with restrictions in the cooperation, these restrictions being given by

graphs or digraphs. An excellent survey of the work on this topic can be found in Slikker
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and Van den Nouweland (2001). Other recent relevant contributions are debt to Amer et

al. (2007), that define a family of measures for a concept they call accessibility in oriented

networks, Van den Brink and Borm (2002) for a special type of digraphs representing

competitions, González-Arangüena et al. (2008) where the classical Myerson value is

generalized to games with restrictions in the communication given by digraphs and Kin

and Jun (2008) on different types of connectivity in directed networks and associated

characterizations of allocations rules.

The approach we present here assumes that actors in a directed network are simultane-

ously players in a TU game which model their economic interests. The restrictions in the

communication generated by the digraph modify such game transforming it in a general-

ized TU one: the digraph restricted game. In these generalized TU games, as introduced

by Nowak and Radzik (1994), the worth of a coalition depends not only on its members

but also on the order in which they incorporate to that coalition. The centrality of each

actor is then measured as the variation of his power from the game without restrictions

to the digraph-restricted one. We will use as index of power for players in a TU game

the Shapley value, and for generalized TU ones, a parametric family of index that include

those characterized by Nowak and Radzik (1994) and Sánchez and Bergantiños (1997).

Therefore a family of measures for each digraph is obtained, each member of this family

corresponding to a particular election of the a priori economic interests (the game) and

of the fixed power index.

The proposed approach is closely related with the ones in Gómez et al. (2003) and

in Amer et al. (2007), specially in the technical framework. Moreover the introduced

measures are characterized. This characterization, is based on two properties: component

efficiency and α-directed fairness. The consideration of arcs (directed links) as units of

relation, instead of the classical links of a graph, introduces an element of asymmetry

in the bilateral relations and, as a consequence, a possible different bargaining power for

both incident nodes. This is the meaning of the α-directed fairness, a closely related

property with the α-hierarchical payoff property in Slikker et al. (2005).

The remaining of the paper is organized as follows. Section 2 contains the notation

and some preliminary concepts. In Section 3 the definition and some properties (including

a characterization) of the proposed family of centrality measures are given. In Section 4

each one of the measures is additively decomposed in three different ones. The obtained
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results are applied in Section 5 to obtain centralities in a simplified version of soccer.

Final conclusions appear in Section 6.

2 Preliminaries

2.1 Games and Generalized Games

A game in characteristic function form (a coalitional game or a TU-game) is a pair (N, v)

where v (the characteristic function) is a real function defined on 2N , the set of all subsets

of N (coalitions), that satisfies v(∅) = 0. For each S ∈ 2N , v(S) represents the (trans-

ferable) utility that players in S can obtain if they decide to cooperate. Implicitly, it is

supposed that, if the players in S form a coalition, members of S must talk together and

achieve a binding agreement.

When there is no ambiguity with respect to the set of players N , we will identify a

game (N, v) with its characteristic function v. We will denote by s the cardinality of the

coalition S ⊂ N and GN will be the 2n − 1 dimensional vector space of TU-games with

player set N . Its unanimity games basis {uS}∅6=S⊂N is defined as follows:

for all S ⊂ N , S 6= ∅, uS(T ) =

{
1 S ⊂ T

0 otherwise.

As a consequence, every TU game v ∈ GN is a linear combination of those games in

the unanimity basis:

v =
∑

∅6=S⊂N

∆v(S)uS.

The coordinates {∆v(S)}∅6=S⊂N are known as the Harsany dividens, (Harsany 1963).

A game v ∈ GN is said to be superadditive if for all coalitions S, T ⊂ N with S∩T = ∅,

v(S ∪ T ) ≥ v(S) + v(T ) holds.

A game v ∈ GN is said to be convex if for all coalitions S, T ⊂ N, v(S∪T )+v(S∩T ) ≥

v(S) + v(T ) holds.

A game v ∈ GN is said to be zero-normalized if v({i}) = 0 for all i ∈ N .
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A game v ∈ GN is said to be symmetric if it exists a function f : {1, 2, . . . , n} → IR

such that for all coalition S ⊂ N , v(S) = f(s). The subespace of GN formed by symmetric

games will be noted SN . SN
0 ⊂ S

N will be the subespace of games that are also symmetric

and zero-normalized.

A game v ∈ GN is said to be almost positive if all its Harsanyi dividens are nonegative.

The family of all these games will be noted APN .

A point solution for TU-games is a function which assigns a payoff vector x ∈ IRn in

every TU-game in GN . One of the most famous solutions is the Shapley value (Shapley

(1953)), ϕ, which is given by:

ϕi(N, v) =
∑

S⊂N\{i}

(n− s− 1)!s!

n!
(v(S ∪ {i})− v(S)), for all i ∈ N.

An alternative expression for the Shapley value is:

ϕi(N, v) =
∑

S⊂N,i∈S

∆v(S)

s
, for all i ∈ N.

Nevertheless, in many social or economic situations, the formation of coalitions is a

process in which not only the members of the coalitions are important but also the order

in which they appear. Taking this idea into account, Nowak and Radzik (1994) introduced

the concept of game in generalized characteristic function form.

Let N = {1, 2, . . . , n} be a finite set of players. For each S ∈ 2N \ {∅}, let us denote

by π(S) the set of all permutations or ordered coalitions of the players in S and, for

notational convenience, π(∅) = {∅}. We will denote Ω(N) = {T ∈ π(S) | S ⊂ N} the set

of all ordered coalitions with players in N .

Given an ordered coalition T ∈ Ω(N), there exists S ⊂ N such that T ∈ π(S). We

will denote H(T ) = S for the set of players in the ordered coalition T , and t = |H(T )|.

A game in generalized characteristic function form is a pair (N, v), N being the players

set and v a real function (the generalized characteristic function), defined on Ω(N) and

satisfying v(∅) = 0.

For each S ⊂ N , and for every ordered coalition T ∈ π(S), v(T ) represents the

economic possibilities of the players in S if the coalition is formed following the order
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given by T . When there is no ambiguity with respect to the set of players N , we will

identify the (generalized) game (N, v) with its (generalized) characteristic function v.

We will denote by GN the set of all generalized cooperative games with players set

N . GN is a vector space with dimension |Ω(N)| − 1. Let us observe that there exists an

isomorphism between the vector space GN and the subspace of GN consisting of all games

for which v(T ) = v(R) if H(T ) = H(R) holds. Intuitively, for games in GN , the order in

which the coalitions are formed is irrelevant.

Taking into account the previous idea we will sometimes identify each game v ∈ GN

with the (transformed) game v̂ ∈ GN defined by:

v̂(T ) = v(H(T )) for all T ∈ Ω(N).

Each ordered coalition T = (i1, . . . , it) ∈ Ω(N) establishes a strict linear order ≺T in

H(T ), defined as follows. For all i, j ∈ H(T ), i ≺T j (i precedes j in T ) if and only if

there exist k, l ∈ {1, . . . , t}, k < l, such that i = ik, j = il.

We base on this strict linear order to define an inclusion relation in Ω(N) in this way:

for A, B ∈ Ω(N) we will say that A is included in B (noted A⊂̃B) if H(A) ⊂ H(B) and

for all i, j ∈ H(A), and i ≺A j it holds i ≺B j.

Given an ordered coalition T = (i1, i2, . . . , it) ∈ Ω(N), we will note ij(T ) = j, j =

1, 2, . . . , t, for the position of each player in that coalition. Moreover we will note T (j) =

ij, j = 1, . . . , t, for the player that is in position j in the coalition.

In this paper, a special basis of GN , the generalized unanimity basis, consisting of the

(generalized) unanimity games {wT}∅6=T∈Ω(N), will often be used. For any T ∈ Ω(N)\{∅},

the generalized characteristic function wT is defined as follows:

for all R ∈ Ω(N), wT (R) =

{
1 if T ⊂̃R

0 otherwise.

The transformed games {ûS}∅6=S⊂N of the classical unanimity games {uS}∅6=S⊂N of

GN , can be easily expressed in terms of the {wT}∅6=T∈Ω(N) in the following way:

ûS =
∑

T∈π(S)

wT , for each S ∈ 2N \ {∅}.
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For a given v ∈ GN , {∆∗
v(T )}∅6=T∈Ω(N) is the set of the generalized unanimity co-

efficients of v (the coordinates of v in the generalized unanimity basis). Sánchez and

Bergantiños (1997) proved that, for all T ∈ Ω(N) \ {∅}:

∆∗
v(T ) =

∑

R⊂̃T

(−1)t−rv(R).

In their seminal paper on games in generalized characteristic function form, Nowak

and Radzik (1994), define and characterize a value ΨNR for these games that generalizes

the Shapley value for TU-games. For each v ∈ GN and all i ∈ N this value is given by:

ΨNR
i (N, v) =

∑

S⊂N\{i}

∑

T=(i1,i2,...,it)∈π(S)

(n− t− 1)!

n!
(v(i1, i2, . . . , it, i)− v(T )).

An alternative expression for this value based on the generalized unanimity coeficients

of v is:

ΨNR
i (N, v) =

∑

T∈Ω(N),i(T )=t

∆∗
v(T )

t!
.

Later, Sánchez and Bergantiños (1997) define and study another generalization, ΨSB

of the Shapley value for TU-games to this class of generalized games, differing from the

former in null player and symmetry axioms. This value can be obtainined from the two

alternative equivalent following expressions:

ΨSB
i (N, v) =

∑

S⊂N\{i}

∑

T=(i1,i2,...,it)∈π(S)

(n− t− 1)!

n!(t + 1)

t+1∑

l=1

(v(i1, . . . , il−1, i, il, . . . , it)− v(T )).

ΨSB
i (N, v) =

∑

T∈Ω(N),i∈H(T )

∆∗
v(T )

t!t
.

In this paper we use a parametric family of functions defined on GN , {Ψα}α∈[0,1]. Each

one of them can be considered as a particular point solution. They are defined, for each

generalized TU-game (N, v) ∈ GN and all i ∈ N by:

Ψα
i (N, v) =

∑

T∈Ω(N),i∈H(T )

∆∗
v(T )

αt−i(T )

t!
∑t−1

l=0 αl
, α ∈ [0, 1]. (1)

The defined family includes the point solutions ΨNR and ΨSB. In particular ΨNR = Ψ0

(it is implicit in (1) the abuse of notation 00 = 1) and ΨSB = Ψ1.
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The idea behind this point solution is that, in a unanimity game wT we share the

reward among the non dummy players, no equitatively (as Sánchez and Bergantiños does)

nor all for the last one (as Nowak and Radzik does) but proportionaly to the position of

the player in T .

2.2 Graphs and Directed Graphs

A graph is a pair (N, γ), N = {1, 2, . . . , n} being a finite set of nodes and γ a collection

of links (edges or ties), that is, unordered pairs {i, j} with i, j ∈ N , i 6= j. When there is

no ambiguity with respect to N , we will refer to the graph (N, γ) as γ.

If {i, j} ∈ γ, we will say that i and j are directly connected in γ. We will say that i

and j are connected in γ if it is possible to join them by a sequence of edges from γ.

Given a graph (N, γ), the notion of connectivity induces a partition of N in connected

components. Two nodes i and j, i 6= j, are in the same connected component if and only if

they are connected. By connected component we mean what is also known as a maximal

connected subset. N/γ denotes the set of all connected components in γ.

A directed graph or digraph is a pair (N, d), N = {1, 2, . . . n} being a set of nodes

and d a subset of the collection of all ordered pairs (i, j), i 6= j, of elements of N . Each

pair (i, j) ∈ d is called an arc. In the following, if there is no ambiguity with respect to

N , we will refer to the digraph (N, d) as d. We will denote DN for the set of all possible

digraphs with nodes set N .

Given a digraph (N, d), if (i, j) ∈ d, we will say that i is directly connected with j.

Obviously, if i is directly connected with j, the reverse is not necessarily true. If i is

not directly connected with j in the digraph, it may still be possible to connect them,

provided that there are other nodes through which we can do so. We will say that i is

connected with j in the digraph (N, d) if there is a directed path connecting them, i.e.,

if there exists an ordered sequence of nodes in N , (i1, i2, . . . , is), such that i1 = i, is = j

and (il, il+1) ∈ d for all l ∈ {1, 2, . . . , s− 1}.

We will say that an ordered set T = (i1, i2, . . . , it) ∈ Ω(N) is connected in the digraph

(N, d) if, for all l = 1, . . . , t− 1, il is directly connected with il+1 in the digraph (N, d).2

2This concept of connectedness coincides with the one in Amer, Giménez and Magaña (2007) but

differs from the used in González-Arangüena et al. (2008) that was introduced basically with the idea of
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Given (N, d) ∈ DN , CN
d is defined as:

CN
d = {T ∈ Ω(N)|T is connected in (N, d)},

and we will assume ∅ /∈ CN
d .

Given a digraph (N, d) ∈ DN , we can define the induced graph (N, γ(d)) as follows:

γ(d) = {{i, j} | i, j ∈ N and (i, j) ∈ d or (j, i) ∈ d} .

A (not ordered) set C ⊂ N is a component in the digraph (N, d) if C ∈ N/γ(d), i.e.,

if C is a connected component in the graph (N, γ(d)). So, given a digraph (N, d) ∈ DN

we will establish a partition of N in components. We will denote by N/d the set of all

the components of the directed graph (N, d). Obviously, N/d = N/γ(d).

Let us observe that, given a component C ∈ N/d and T ∈ Ω(C), it is possible that T

can be not connected ordered set in (N, d).

Then the connection concept for components we use is clearly weaker than the one

used for ordered sets. We will say that the digraph d ∈ DN is (weakly) connected if

|N/d| = 1.

We will use, for short, (N, dij) instead of (N, d\{(i, j)}) for the digraph obtained when

the arc (i, j) is removed from (N, d).

We will use, also, Li(N, d) to note the subset of d consisting of all the arcs incident on

i.

2.3 Digraph Communication Situations

A directed communication situation3 is a triplet (N, v, d) where (N, v) is a TU-game

in GN and (N, d) a digraph in DN . We will note DCN for the family of all directed

communication situations with nodes-players set N . The subset of DCN corresponding to

generalizing the Myerson value to the case of games restricted to digraphs. The definition of connectedness

in digraphs is not so obvious as in the case of graphs. In Kun and Jim (2008) several alternative concept

of connection in digraphs are used.
3This denomination is used in Slikker and Van den Nouweland (2001) with a different meaning.

Nevertheless we have preferred to maintain it in order to emphasize the generalization of the classical

concept of communication situation to this new setting of directed graphs.
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directed communication situations in which the game is a symmetric one will be noted as

DCN
S , whereas DCN

APS will correspond to directed communication situations in which the

game is simultaneously almost positive and symmetric. The respective subsets of DCN
S

and DCN
APS formed by directed communication situations in which the game is also a

0-normalized one will be noted DCN
S0

and DCN
APS0

.

3 A family of centrality measures for digraph com-

munication situations

In order to define centrality measures for digraphs using a game theoretical approach, let

us consider (N, uS, d) ∈ DCN , S ⊂ N , where (N, uS) ∈ GN is a unanimity game and

(N, d) ∈ DN a digraph. The restrictions in the communication modeled by a digraph

affect to the worth of the several coalitions and thus a new game arises to take into

account this constrains. This is the classical approach to study the problem of games

with resctrictions in the communications as in Myerson (1977,1980).

Given the directed communication situation (N, uS, d), the digraph-restricted game

(N, ud
S) can be interpreted as the game of connect S in d, and in our approach, we

propose to consider all the connected ordered coalitions T ∈ π(S). This leads to define

the game (N, ud
S) as the generalized TU one with (generalized) characteristic function

given by

ud
S =

∑

T∈π(S)∩CN
d

w
T
.

We will extend previous definition to DCN by linearity and thus, given (N, v, d) ∈

DCN , we define the digraph-restricted game (N, vd) ∈ GN as the one with generalized

characteristic function:

vd =
∑

∅6=S⊂N

∆v(S)ud
S.

In the next proposition we will give an expression for vd in terms of v.

Proposition 3.1 Given (N, v, d) ∈ DCN , the generalized characteristic function of the

digraph restricted game (N, vd) is given by:

vd(T ) =
∑

∅6=R⊂̃T

λd
v(R)v(H(R)),
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being λd
v(R) =

∑

R⊂̃K⊂̃T,K∈CN
d

(−1)k−r.

Proof:

vd(T ) =
∑

∅6=S⊂N

∆v(S)ud
S(T ) =

∑

∅6=S⊂N

∆v(S)
∑

K∈π(S)∩CN
d

wK(T ) =

=
∑

K⊂̃T, K∈CN
d

∆v(H(K)) =
∑

K⊂̃T, K∈CN
d

∑

∅6=L⊂H(K)

(−1)k−lv(L) =

=
∑

∅6=R⊂̃T

∑

R⊂̃K⊂̃T, K∈CN
d

(−1)k−rv(H(R)),

last equality holding because there exists a unique permutation of R, L, (L = H(R)) such

that R⊂̃K⊂̃T .

Once the previous framework is obtained we pass to define a family of centrality

measures.

Definition 3.1 Given (N, v, d) ∈ DCN the centrality of node i ∈ N , noted Kα
i (N, v, d) is

defined as:

Kα
i (N, v, d) = Ψα

i (N, vd)− ϕi(N, v).

As it is obvious from that definition, we are assuming that the centrality of a given

node can be measured as the difference in its allocation when the restrictions in the com-

munication given by the digraph are taking into account and the corresponding allocation

when the restrictions do not exist.

Interpreting Shapley value and Ψα, α ∈ [0, 1] as indices of power in GN and GN

respectively, the defined measure of centrality for a given node can be viewed as the

variation in its power due to the position in the digraph.

In order to avoid a priori differences among players given by different status in the

original game, that can contaminate the obtained centrality, we propose to use symmetric

games (N, v). As a consequence, the term ϕi(N, v) is equal for all players and then,

removing it, only a shift transformation is produced. Another shift transformation (that

will permit us to associate null centrality to isolated nodes) is obtained when replacing

each symmetric game by its zero-normalized version. Then when defining the centrality

we will restrict ourselves to symmetric and zero-normalized games.

From now on we will use this alternative definition of centrality:
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Definition 3.2 Given (N, v, d) ∈ DCN
S0

, α ∈ [0, 1] the centrality of node i ∈ N is defined

as:

κα
i (N, v, d) = Ψα

i (N, vd).

α ∈ [0, 1] evaluates the assymmetry of the arcs impact and can be view as a discount

factor of the importance of the iniciator node versus the receiver one. Of course, chossing

a value for α, is a critical aspect of the defined family of measures. This value can be

obtained from empirical information, from the relative importance of to be initiator in a

relation... Obviously similar results to those proposed here are obtained if we change α

by 1
α

assuming that the initiator node is in a better position than the receiver node.

As a consequence, the special case α = 1 can be interpreted as the one in which

both incident nodes in an arc play symmetrical roles. Then it is natural to assume that

swiching these roles for all players, the respective centralities are not affected. This result

is stated in next proposition.

Proposition 3.2 For α = 1, κ1(N, v, d) = κ1(N, v, d) and so when the measure considers

symmetrically both nodes incident in an arc, the obtained centralities coincide with those

obtained changing the sense of the arcs.

Proof: For each S ⊂ N we have ud
S =

∑
T∈π(S)∩CN

d
wT . For T = (i1, i2 . . . , ir−1, ir)

let us note T = (ir, ir−1, . . . , i2, i1). Then T ∈ CN
d if and only if T ∈ CN

d
, and thus

ud
S =

∑
T∈π(S)∩CN

d
wT .

Using that Ψ1
i (N, wT ) does not depend on i for all i ∈ T (and 0 if i /∈ T ) we have that

Ψ1
i (N, wT ) = Ψ1

i (N, wT ) for all i ∈ N . Then, by the linearity of the centrality measure,

we have

κ1
i (N, v, d) = κ1

i (N, v, d)

In a sociological context it is assumed that, adding an arc between two given nodes

increases (or at least does not decreas) their centralities. In allocation rules for commu-

nication situations, this property is known as stability. So, it is reasonable to explore the

extent to which this property is verified by the proposed family of centrality measures.

Unfortunately, in order to satisfy this property, we must restrict ourselves to use games

in a subset of GN . Next example illustrates this point.
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Example 3.1 Consider the directed communication situation (N, v, d) with N =

{1, 2, 3, 4, 5, 6, 7}, v the symmetric and superadditive, (and even convex) game

v(S) =
7∑

k=2

(
s

k

)
(−1)k and d = {(2, 3), (2, 4), (2, 5), (2, 6), (2, 7)}. Consider also the di-

rected communication situation (N, v, d′) with d′ = d ∪ {(1, 2)}.

1 2 

3

4

5

6

7

(N,d' ) 

1 2 

3

4

5

6

7

(N,d ) 

As v =
∑

S⊂N, s≥2

(−1)suS and using the definition of the restricted game, we have:

vd = w(2,3) + w(2,4) + w(2,5) + w(2,6) + w(2,7),

vd′ = w(1,2) + w(2,3) + w(2,4) + w(2,5) + w(2,6) + w(2,7)−

−w(1,2,3) − w(1,2,4) − w(1,2,5) − w(1,2,6) − w(1,2,7).

and thus, for α ∈ [0, 1],

κα
1 (N, v, d) = 0, and κα

1 (N, v, d′) =
α

2!(1 + α)
−

5α2

3!(1 + α + α2)
.

It is easy to see that, for α >
√

7−1
2

, κα
1 (N, v, d) > κα

1 (N, v, d′).

Of course, previous example points out an undesirable aspect of the proposed meaures.

This behaviour can be avoided if we restrict ourselves to the family APN ⊂ GN , that will

permit us to guarantee the stability. Even this restriction can be viewed as a weakness of

the defined measures, on the other hand, it must be pointed out that this type of games

incentivate the formation of coalitions in a stronger way than, for example superadditive

games or convex games, giving a positive dividend to each coalition. So, from now on,

we will suppose that the economical interests of players satisfy this strong tendency to

cooperate. Nevertheless, in order to obtain the maximum degree of generality possible

about the properties of Ψα(N, vd), the results will be written assuming the lesser restrictive

set of hypothesis.
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Several of the games in this family have an intuitive interpretation as communication

games:

(a) The game (N, vk), k = 2, . . . , n with characteristic function,

vk(S) =

{
k!
(

s

k

)
k = 1, . . . , s

0 k = s + 1, . . . , n,

represents, for each subset S ⊂ N , the number of ordered subcoalitions of S with

size k that can be formed.

(b) The zero-normalized conferences game is v =
n∑

k=2

vk.

(c) And more generally any linear positive combination v =
n∑

k=2

µkvk of vk games with

µi ≥ 0, i = 2, . . . , n.

Proposition 3.3 Given a directed communication situation (N, v, d) ∈ DCN
APS0

and

(i, j) ∈ d:

κα
l (N, v, d) ≥ κα

l (N, v, dij) for l ∈ N and α ∈ [0, 1].

Proof: Consider first the unanimity games (N, uS), S ⊂ N , s ≥ 2. Obviously (N, uS) ∈

APN ∩ SN
0 . Then, for all l ∈ N and all α ∈ [0, 1],

κα
l (N, uS, d) =

∑

T∈π(S)∩CN
d

Ψα
l (N, wT ) ≥

∑

T∈π(S)∩CN

dij

Ψα
l (N, wT ) = κα

l (N, uS, dij),

the inequality holding because CN
dij ⊂ CN

d and Ψα
l (N, wT ) ≥ 0. The result for a more

general directed communication situation (N, v, d) with (N, v) ∈ APN ∩ SN
0 is deduced

using the linearity of the measure and the fact that all dividends are nonegative.

As a straightforward consequence we obtain the stability of the defined measures.

Using previous proposition is easy to see that the centrality of a given node i ∈ N is

minimal when i is an isolated node.
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Proposition 3.4 Given (N, v, d) ∈ DCN
APS0

and i ∈ N such that Li(N, d) = ∅ (i.e. i is

an isolated node) then:

0 = κα
i (N, v, d) ≤ κα

i (N, v, d′),

for all (N, v, d′) ∈ DCN
APS0

and all α ∈ [0, 1].

Proof: Given (N, v, d) ∈ DCN
APS0

, i ∈ N and α ∈ [0, 1], using previous proposition

sequentially:

κα
i (N, v, d′) ≥ κα

i (N, v, d′ \ Li(N, d′)) = v({i}) = 0 = κα
i (N, v, d), for all α ∈ [0, 1].

Next property stablishes that the centrality of a given node depends only on the

component to which it belongs. So, we can calculate centralities in a local way.

Proposition 3.5 Let (N, v, d) ∈ DCN
APS0

and let N1, N2 ⊂ N with N1 ∪ N2 = N and

N1 ∩ N2 = ∅. Let dl = {(i, j) ∈ d such that (i, j) ∈ Nl}, l = 1, 2 and suppose d verifies

d = d1 ∪ d2. Then, for i ∈ Nl, l = 1, 2 and α ∈ [0, 1]:

κα
i (N, v, d) = κα

i (Nl, v|Nl
, dl).

Proof: The characteristic function vd satisfies for all T ⊂ N , vd(T ) = vd(T ∩N1)+

vd(T ∩N2) = vd1(T ∩N1) + vd2(T ∩N2) = (v|N1)
d1(T ) + (v|N2)

d2(T ), and thus,

vd = (v|N1)
d1 + (v|N2)

d2 .

Without lost of generality, suppose i ∈ N1, therefore:

Ψα
i (N, vd) = Ψα

i (N1, (v|N1)
d1) = κα

i (N1, v|N1 , d1), α ∈ [0, 1].

In order to compare centralities of nodes belonging to different digraphs, it would be

interesting to know the total centrality in a given digraph, i.e., the sum of the centralities

of different actors in the network.

Next proposition stablishes that the defined measures are efficient in connected di-

graphs. In this case we can drop the hypothesis of being the game almost positive.
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Proposition 3.6 For all α ∈ [0, 1], κα is efficient in digraphs, i.e.: given (N, v, d) ∈

DCN
S0

, (N, d) connected, we have:

∑

i∈N

κα
i (N, v, d) =

∑

T∈π(N)

vd(T )

n!
.

Proof: For α ∈ [0, 1],
∑

i∈N κα
i (N, v, d) =

∑
i∈N Ψα

i (N, vd).

So, all that is left to prove is the average efficiency of Ψα. In fact, for all (N, w) ∈ GN :

∑

i∈N

Ψα
i (N, w) =

∑

i∈N

Ψα
i (N,

∑

∅6=T∈Ω(N)

∆∗
w(T )wT ) =

=
∑

i∈N

∑

∅6=T∈Ω(N)

∆∗
w(T )Ψα

i (N, wT ) =
∑

∅6=T∈Ω(N)

∆∗
w(T )

∑

i∈N

Ψα
i (N, wT ) =

=
∑

∅6=T∈Ω(N)

∆∗
w(T )

1

t!
=

∑

∅6=T∈Ω(N)

1

t!

∑

∅6=R⊂̃T

(−1)t−rw(R) =
∑

∅6=T∈Ω(N)




∑

∅6=R⊂̃T

(−1)t−r

t!


w(R).

Moreover, taking l = t− r we have:

∑

∅6=R⊂̃T

(−1)t−r

t!
=

n−r∑

l=0

(
r + l

l

)(
n− r

l

)
l!

(−1)l

(r + l)!
=

=
1

r!

n−r∑

l=0

(
n− r

l

)
(−1)l =

{
1
n!

if r = n

0 otherwise

and therefore,
∑

i∈N

Ψα
i (N, w) =

∑

R∈π(N)

w(R)

n!
.

And taking w = vd, the result is proved.

Next corollary (which proof is straightforward) extends to the general case the result

in Proposition 3.6.

Corollary 3.1 For α ∈ [0, 1], κα satisfy components efficiency i.e.: given (N, v, d) ∈

DCN
S0

, if N/d = {C1, C2, . . . , Ck}, for j = 1, 2, . . . , k,

∑

i∈Cj

κα
i (N, v, d) =

∑

T∈π(Cj)

vd(T )

cj!
.

17



Example 3.2 Consider the following directed communication situations

(N, v, d1), (N, v, d2), and (N, v, d3) where (N, d1), (N, d2), (N, d3) are the out-

star, the in-star and the oriented left-right chain with four nodes, respectively, i.e.,

d1 = {(1, 2), (1, 3), (1, 4)}, d2 = {(2, 1), (3, 1), (4, 1)} and d3 = {(1, 2), (2, 3), (3, 4)}, and

the game v = v2 + v3 + v4. Then:

1 3

2

4

1 3

2

4

1 2 3 4 

(N,d
1
) (N,d 

2
) (N,d 

3
)

vd1 = 2!(w(1,2) + w(1,3) + w(1,4)),

vd2 = 2!(w(2,1) + w(3,1) + w(4,1)),

vd3 = 2!(w(1,2) + w(2,3) + w(3,4)) + 3!(w(1,2,3) + w(2,3,4)) + 4!w(1,2,3,4),

κα(N, v, d1) =

(
3α

1 + α
,

1

1 + α
,

1

1 + α
,

1

1 + α

)
, α ∈ [0, 1].

κα(N, v, d2) =

(
3

1 + α
,

α

1 + α
,

α

1 + α
,

α

1 + α

)
, α ∈ [0, 1].

κα(N, v, d3) =

(
α

1 + α
+

α2

1 + α + α2
+

α3

1 + α + α2 + α3
, 1 +

α2 + α

1 + α + α2
+

α2

1 + α + α2 + α3
,

1 +
1 + α

1 + α + α2
+

α

1 + α + α2 + α3
,

1

1 + α
+

1

1 + α + α2
+

1

1 + α + α2 + α3

)
, α ∈ [0, 1].

The total centralities, which do not depend on α as Corollary 3.1 shows, are

4∑

i=1

κα
i (N, v, d1) =

4∑

i=1

κα
i (N, v, d2) = 3 and

4∑

i=1

κα
i (N, v, d3) = 6.

As it is obvious, with these measures, the centrality of the hub in an in-star is greater

than the corresponding one in the out-star and conversely for satellites. In this case, any

normalization (based on the sum) can be avoided as the total sum coincides in both stars.

In the chain d3, centrality incresases from node 1 to 3, for all α ∈ [0, 1]. When

comparing node 3 and 4 the ranking depends on the value of α. These results, that seem
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to be not very appealling, will be interpreted when we consider the decomposition of the

measures in next section. On the other hand, for α ∈ [0, 1] 1
6
κα

i (N, v, d3) ≤
1
3
κα

1 (N, v, d2),

i = 1, 2, 3, 4 and then the normalized centrality of each node in the four-nodes oriented

chain is lesser than the corresponding normalized centrality for the hub of a four-nodes

in-star.

Finally, when comparing 1
3
κα

1 (N, v, d1) with 1
6
κα

i (N, v, d3), the ranking depends on the

value of α.

Another question of interest, from sociological point of view, is the impact that has

in a pair of individuals to remove a directed relation between them. The defined family

of measures covers the possibility of an asymmetrical impact on the two individuals that

break their directed relation. Both change their centralities, but the initiator-node one

only in a proportion α ∈ [0, 1] that the receiver one. We will refer to this property as

α-directed fairness (for α ∈ [0, 1]).

Proposition 3.7 κα satisfies the α-directed fairness property, i.e.: given (N, v, d) ∈ DCN
S0

and i, j ∈ N such that (i, j) ∈ d, for all α ∈ [0, 1],

κα
i (N, v, d)− κα

i (N, v, dij) = α[κα
j (N, v, d)− κα

j (N, v, dij)].

Proof: Let us first consider the unanimity game (N, uS) , S ⊂ N with s ≥ 2. Then,

ud
S − udij

S =
∑

T∈π(S)∩CN
d

,T (j)=T (i)+1

wT ,

and therefore

κα
i (N, uS, d)− κα

i (N, uS, dij) =
∑

T∈π(S)∩CN
d

,T (j)=T (i)+1

αt−T (i)

t!
∑t−1

r=0 αr
=

= α
∑

T∈π(S)∩CN
d

,T (j)=T (i)+1

αt−(T (i)+1)

t!
∑t−1

r=0 αr
= α[κα

j (N, uS, d)− κα
j (N, uS, dij)].

As κα is linear in v, the result is proved

Again, if we assume that removing an arc the centrality of incident nodes must decrease

or at least not increase, we must use almost positive games. In this case the impact is

nonegative for both players but minor for the iniciator one than for the receiver one. If
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the game is not almost positive the centrality of both can increase, but in this case the

corresponding variation of the reveiver-node more.

Previous properties are interesting by themselves as they reflect appelling aspects for

a measure to be considered as a centrality one. But it is even more important from a

theorical point of view is the fact that the last two characterize the defined family of

centrality measures when α 6= 0. The proof is given in the following theorem.

Theorem 3.1 For each α ∈ (0, 1], κα : DCN
S0
→ IRn is the unique function defined on

DCN
S satisfying components efficiency and α-directed fairness.

Proof: As it is already proved, κα : DCN
S0
→ IRn satisfies components efficiency and

α-directed fairness. Conversely, suppose α ∈ (0, 1] and ξα : DCN
S0
→ IRn is a function

satisfying these two properties. We will prove, by induction on the number of arcs, |d|, in

(N, d), that ξα(N, v, d) = κα(N, v, d) for all (N, v, d) ∈ DCN
S0

and all α ∈ (0, 1].

If |d| = 0, we have N/d = {{1}, . . . , {n}} and thus by components efficiency

ξα
i (N, v, d) = v({i}) = 0 = κα

i (N, v, d), i ∈ N .

Suppose, then, that ξα = κα for all α ∈ (0, 1] and all (N, v, d) ∈ DCN
S0

with |d| < m

and consider (N, v, d) ∈ DCN
S with |d| = m. For (h, k) ∈ d, using the induction hypothesis

and the fact that both functions ξα and κα satisfy α-directed fairness we have:

ξα
h (N, v, d)− αξα

k (N, v, d) = ξα
h (N, v, dhk)− αξα

k (N, v, dhk) =

= κα
h(N, v, dhk)− ακα

k (N, v, dhk) = κα
h(N, v, d)− ακα

k (N, v, d),

and thus

ξα
h (N, v, d)− κα

h(N, v, d) = α[ξα
k (N, v, d)− κα

k (N, v, d)]. (2)

Consider i ∈ N and C ∈ N/d the component to which i belongs. If |C| = 1 it

is trivial by components efficiency that ξα
i = κα

i for α ∈ (0, 1]. So, suppose there is

j ∈ C, j 6= i. It exists a sequence (not necessarily unique) i0 = i, i1, . . . , il−1, il = j, such

that for t = 0, 1, . . . , l − 1, (it, it+1) ∈ d or (it+1, it) ∈ d , or both possibilities.

Let us define rt(i, j) =

{
1 if (it, it+1) ∈ d

−1 otherwise .

Obviously rt(i, j) depends on the considered sequence i0 = i, i1, . . . , il = j but this

fact is notationaly ignored. Then, using (2) sequentially:

ξα
i (N, v, d)− κα

i (N, v, d) = α
∑ l−1

t=0 rt(i,j)

[ξα
j (N, v, d)− κα

j (N, v, d)].
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Therefore,

∑

j∈C

[ξα
j (N, v, d)− κα

j (N, v, d)] =

[
1 +

(
∑

j∈C, j 6=i

α
−

∑ l−1
k=0

rt(i,j)

)]
[ξα

i (N, v, d)− κα
i (N, v, d)].

(3)

But using the components efficiency, the left hand term in (3) is zero. As 1 +
∑

j∈C,j 6=i α
−

∑ l−1
t=0 rt(i,j)

6= 0 for all α ∈ (0, 1], we conclude that for i ∈ N :

ξα
i (N, v, d) = κα

i (N, v, d), for α ∈ [0, 1],

which completes the proof.

A similar proof to the given in previous proposition shows us that the restriction of the

defined measures to DCN
APS0

can be characterized in terms of the same properties. Next

example proves that both previous properties are not sufficient to guarantee the unicity

of κ0.

Example 3.3 Given (N, v, d) ∈ DCN
S0

, let N/d = {C1, . . . , Cr}, consider the digraphs

(Ck, d
lk), lk = 1, 2, . . . , ck where dlk = {(ilk , j), j 6= ilk , j ∈ Ck} for each ilk ∈ Ck.

Let us define the following function ξ on DCN
S0

. Given (N, v, d) ∈ DCN
S0

, for i ∈ N , let

be Ck the component of (N, d) to which i belongs.

ξi(N, v, d) = κ0
i (N, v, d) +

∑

dlk⊂d

[
ξi(N, v, dlk)− κ0

i (N, v, dlk)
]
,

where:

ξi(N, v, dlk) =

{
0 if i = ilk

bi if i 6= ilk ,
(4)

with bi ∈ IR, and
∑

i6=ilk
bi =

∑
T∈π(Ck)

vd(T )
ck!

.

Let us recall κ0
i (N, v, di) = v({i}) = 0 for the hub of an out-star as we can sequentially

remove all the arcs without change of the i-values (because of the 0-directed fairness) and

thus κ0
i (N, v, di) = κ0

i (N, v, ∅). Then by components efficiency κ0
i (N, v, ∅) = v({i}) = 0.

Choosing the values bi, i 6= ilk of (4) in an appropiate way (which is always possible when

there exist k with ck ≥ 3), we have that ξ differs from κ0.

Let us prove that this new function, as κ0 does, satisfies components efficiency and

0-directed fairness properties.
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The efficiency is given by the fact that:

∑

i∈Ck

ξi(N, v, d) =
∑

i∈Ck

κ0
i (N, v, d) +

∑

i∈Ck

∑

dlk⊂d

[
ξi(N, v, dlk)− κ0

i (N, v, dlk)
]

=

=
∑

i∈Ck

κ0
i (N, v, d) +

∑

dlk⊂d

∑

i∈Ck

[
ξi(N, v, dlk)− κ0

i (N, v, dlk)
]

=

∑
T∈π(Ck) vd(T )

ck!
,

this last equallity holding as the double summatory vanishes taking into account the effi-

ciency in out-stars of allocaions rules κ0 and ξ.

In order to prove that ξ satisfies 0-directed fairness, consider first the case (i, j) ∈ d,

i ∈ Ck, (i, j) /∈ dlk for each dlk ⊂ d. Then,

ξi(N, v, d)− ξi(N, v, dij) = κ0
i (N, v, d) +

∑

dlk⊂d

[
ξi(N, v, dlk)− κ0

i (N, v, dlk)
]
−

−κ0
i (N, v, dij)−

∑

dlk⊂dij

[
ξi(N, v, dlk)− κ0

i (N, v, dlk)
]

= κ0
i (N, v, d)− κ0

i (N, v, dij)

as taking into account that (i, j) /∈ dlk for each dlk ⊂ d, we have dlk ⊂ dij if and only if

dlk ⊂ d. Finally, because of the 0-directed fairness of κ0, κ0
i (N, v, d)− κ0

i (N, v, dij) = 0.

Consider, then, the case in which (i, j) ∈ d, i ∈ Ck and it exists di ⊂ d (which will be

necessarily unique) such that (i, j) ∈ di. Then

ξi(N, v, d)− ξi(N, v, dij) = κ0
i (N, v, d) +

∑

dlk⊂d

[
ξi(N, v, dlk)− κ0

i (N, v, dlk)
]
−

−κ0
i (N, v, dij)−

∑

dlk⊂dij

[
ξi(N, v, dlk)− κ0

i (N, v, dlk)
]

=

= κ0
i (N, v, d)− κ0

i (N, v, dij) + ξi(N, v, di)− κ0
i (N, v, di) = 0 + v({i})− v({i}) = 0.

Then both different functions ξ and κ0 satisfy efficiency and 0-directed fairness, and thus

these two properties not characerize κ0.

Nevertheless, we have emphasize the utility of using symmetric games where measuring

the centrality of nodes in a digraph. In next result we prove that κ0 can be characterized

in the family DCN
S0

adding to the two previous ones the symmetry axiom.

Definition 3.3 We will say that nodes i and j are symmetric in the digraph (N, d) if it

exists a permutation π : N → N such that π(i) = j, π(j) = i and (k, l) ∈ d if and only if

(π(k), π(l)) ∈ d.
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Definition 3.4 A function ξ : DCN
S0
→ IRn satisfies the symmetry axiom if, for all

(N, v, d) ∈ DCN
S0

and all pair i, j of symmetric nodes in (N, d), ξi(N, v, d) = ξj(N, v, d)

holds.

Proposition 3.8 κ0 : DCN
S0
→ IRn is the unique function defined in DCN

S0
that satisfies

components efficiency, 0-directed fairness and symmetry.

Proof: It is obvious that κ0 satisfies symmetry and it is already proved that it satisfies

0-directed fairness and components efficiency. Consider ξ : DCN
S0
→ IRn, satisfying these

three properties. We will prove, by backward induction on the cardiality of d, that

ξ(N, v, d) = κ0(N, v, d) for all (N, v, d) ∈ DCN
S0

.

If d = KN then, by symmetry and efficiency, ξi(N, v,KN) = v(N)
n

= κ0(N, v,KN), i =

1, . . . , n.

Suppose that ξ coincides with κ0 for all (N, v, d) with |d| ≥ k and consider (N, v, d)

with |d| = k − 1. Then for i ∈ N and any (i, j) ∈ Kn \ d:

ξi(N, v, d ∪ {(i, j)})− ξi(N, v, d) = 0,

as ξ satisfies 0-directed fairnesss. Then:

ξi(N, v, d) = ξi(N, v, d ∪ {(i, j)}) = κ0
i (N, v, d ∪ {(i, j)}),

last equality holding due to the induction hypothesis. As κ0 satifies 0-directed fairness,

κ0
i (N, v, d ∪ {(i, j)}) = κ0

i (N, v, d) and thus ξi(N, v, d) = κ0
i (N, v, d), and the result is

proved.

Following the steps of previous proposition we can prove that the restriction of κ0 to

the DCN
APS0

is also characterized by efficiency, zero-directed fairness and symmetry.

4 A decomposition of the centrality measures

Besides the appealing properties analyzed in previous section, it must be pointed out some

miopic behaviour of the defined measures. Next example shows that, when comparing
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centralities of two nodes in different digraphs and with a different connectivity (but the

same game), it is possible to obtain for these two nodes equal proportions of the total

centrality. Obviously this can be interpreted as a weakness of the defined measures that

are not able to higlight all the differences in the connectivity between the considered

nodes.

Example 4.1 Given the directed communication situations (N, v, d) and (N, v, d′) where

N = {1, 2, 3, 4} v = v2+v3 (v2 and v3 being the previously defined communication games),

d = {(1, 2), (2, 3), (3, 4), (4, 1)} and d′ = d ∪ {(1, 3), (3, 1), (2, 4), (4, 2)}. A representation

of this two digraphs is given in Figure 4.1:

(N,d')(N,d)

1 2

3 4

1 2

3 4

It is straightforward to see that, for each α ∈ [0, 1]: κα
i (N, v2 + v3, d) = 2, for each

i = 1, 2, 3, 4, and thus:

κα
i (N, v2 + v3, d)

∑4
j=1 κα

i (N, v2 + v3, d)
=

1

4
, i = 1, 2, 3, 4.

Similarly, κα
i (N, v2 + v3, d

′) = 5, for each i = 1, 2, 3, 4 and thus

κα
i (N, v2 + v3, d

′)
∑4

j=1 κα
i (N, v2 + v3, d′)

=
1

4
, i = 1, 2, 3, 4.

Consequently the relative centrality for each node in (N, v2 + v3, d) coincides with its

corresponding one in (N, v2 + v3, d
′). But it is obvious there exist several differences

between these digraphs (density, incident arcs, etc). This example inspires the idea that,

perhaps, the centrality is a vector measure and not a scalar one. In other words, using a

unique number to measure the centrality of a node is excesively reduccionist. Taking this

idea into account, we eill try to split each one of the defined measures in three different

ones, which can be considered as alternative centrality measures by themselves. One of

them will be interpreted as an emission measure, the second has a meaning of betweeness

and the third one will measure the reception centrality.
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This three-dimensional measure will permit us to highlight some differences in the

centrality that a single measure is unable to point out.

Definition 4.1 Given a directed communication situation (N, v, d) ∈ DCN
S0

, we define,

for each α ∈ [0, 1], the emission centrality of node i, ǫα
i (N, v, d) as:

ǫα
i (N, v, d) =

∑

S⊂N

∆v(S)
∑

T∈π(S)∩Cd(S),i(T )=1

Ψα
i (N, wT ) =

=
∑

S⊂N

∆v(S)
∑

T∈π(S)∩Cd(S),i(T )=1

αt−1

t!
∑t−1

k=0 αk
.

Definition 4.2 Given a directed communication situation (N, v, d) ∈ DCN
S0

, we define,

for each α ∈ [0, 1], the betweeness centrality of node i, βα
i (N, v, d) as:

βα
i (N, v, d) =

∑

S⊂N

∆v(S)
∑

T∈π(S)∩Cd(S),1<i(T )<t

Ψα
i (N, wT ) =

=
∑

S⊂N

∆v(S)
∑

T∈π(S)∩CN
d

(S),1<i(T )<t

αt−1

t!
∑t−1

k=0 αk
.

Definition 4.3 Given a directed communication situation (N, v, d) ∈ DCN
S0

, for α ∈ [0, 1],

the reception centrality of node i, ρα
i (N, v, d) is given by

ρα
i (N, v, d) =

∑

S⊂N

∆v(S)
∑

T∈π(S)∩CN
d

(S),i(T )=t

Ψα
i (N, wT ) =

=
∑

S⊂N

∆v(S)
∑

T∈π(S)∩Cd(S),i(T )=t

1

t!
∑t−1

k=0 αk
.

The given definitions of ǫα
i (N, v, d), βα

i (N, v, d) and ρα
i (N, v, d) split the total centrality

of node i, κα
i (N, v, d), in three quantities. Let us note for the case α = 0 κ0(N, v, d) =

ρ0(N, v, d) and then the decomposition is inessential. They are obtained from the value

assigned to i by its position in ordered connected sets and taking into account that this

position can be the first one, the last one, or an intermediate one. Te first position in an

ordered connected set permits to initiate the communication, the intermediate positions

are clearly associated with betweeness and finally, to be at the end of each connected

chain transforms a node in a receiver one. These ideas justify the chosen notation and its

interpretation.

The first result stablishes that this new measures give us an additive decomposition

of κα.
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Proposition 4.1 For each (N, v, d) ∈ DCN
S0

and α ∈ [0, 1] we have,

κα(N, v, d) = ǫα(N, v, d) + βα(N, v, d) + ρα(N, v, d).

Proof: If (N, v, d) ∈ DCN
S0

, α ∈ [0, 1] and i ∈ N,

κα
i (N, v, d) =

∑

S⊂N

∆v(S)
∑

T∈π(S)∩Cd(S)

Ψα
i (N, wT ) =

=
∑

S⊂N

∆v(S)




∑

T∈π(S)∩Cd(S),i(T )=1

Ψα
i (N, wT ) +

∑

T∈π(S)∩Cd(S),1<i(T )<t

Ψα
i (N, wT )+

+
∑

T∈π(S)∩Cd(S),i(T )=t

Ψα
i (N, wT )


 =

∑

S⊂N

∆v(S)
∑

T∈π(S)∩Cd(S),i(T )=1

Ψα
i (N, wT )+

+
∑

S⊂N

∆v(S)
∑

T∈π(S)∩Cd(S),1<i(T )<t

Ψα
i(T )(N, wT ) +

∑

S⊂N

∆v(S)
∑

T∈π(S)∩Cd(S),i(T )=t

Ψα
t (N, wT ) =

= ǫα
i (N, v, d) + βα

i (N, v, d) + ρα
i (N, v, d)

and thus the result is proved.

Let us consider again the directed communication situations given in the Example

4.1. Previous decomposition permits us to illustrate some differences between nodes of

different digraphs having equal relative centrality.

Example 4.2 Given the directed communication situations (N, v2 + v3, d) and (N, v2 +

v3, d
′) as in Example 4.1 we have for i = 1, 2, 3, 4,

ǫα
i (N, v2 + v3, d) =

α

1 + α
+

α2

1 + α + α2
,

ρα
i (N, v2 + v3, d) =

1

1 + α
+

1

1 + α + α2
,

βα
i (N, v2 + v3, d) =

α

1 + α + α2
,

ǫα
i (N, v2 + v3, d

′) =
2α

1 + α
+

3α2

1 + α + α2
,

ρα
i (N, v2 + v3, d

′) =
2

1 + α
+

3

1 + α + α2
,

βα
i (N, v2 + v3, d

′) =
3α

1 + α + α2
.
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As different nodes have the same centrality inside each communication situation and the

same proportion of the total centrality when comparing both communication situations, in

order to highlight some differences, we will use the new defined measures. Let us compare

the proportion of the centrality of each node due to the emission, reception and betweeness

in both digraphs to explain the existing differences.

We have for i = 1, 2, 3, 4,

ǫα
i (N, v2 + v3, d)

κα
i (N, v1 + v2, d)

−
ǫα
i (N, v2 + v3, d

′)

κα
i (N, v1 + v2, d′)

=
α

10(1 + α)(1 + α + α2)
≥ 0,

i.e. for α ∈ (0, 1], the proportion of the centrality of each node due to emission is greater

in (N, v2 + v3, d) than in (N, v2 + v3, d
′). In the particular case α = 0 as the measure κ0

coincides with ρ0, this proportion is zero for each node in both difraphs.

If we look at the proportion of the centrality due to reception, for i = 1, 2, 3, 4,

ρα
i (N, v2 + v3, d)

κα
i (N, v1 + v2, d)

−
ρα

i (N, v2 + v3, d
′)

κα
i (N, v1 + v2, d′)

=
α2

10(1 + α)(1 + α + α2)
,

and thus, we see that it is greater too in (N, v2 + v3, d) for α ∈ (0, 1] and unchanged

for α = 0. Finally as it was expected, the proportion os the centrality due to betweeness

is higher (except for the case α = 0) for nodes in (N, v2 + v3, d
′) than for nodes in

(N, v2 + v3, d):

βα
i (N, v2 + v3, d)

κα
i (N, v1 + v2, d)

−
βα

i (N, v2 + v3, d
′)

κα
i (N, v1 + v2, d′)

=
−α

10(1 + α + α2)
≤ 0.

Let us turn now our the attention to some appealling (because of their intuitiveness)

properties of these new measures.

First proposition shows that the hub of an in-star is the node in which the proportion

of the reception centrality (with respect to the total reception centrality) is maximized.

Proposition 4.2 Given (N, v, dIS) ∈ DCN
APS0

and dIS = {(i, 1), i ∈ N \ {1}}, for all

(N, d) ∈ DN and α ∈ [0, 1]:

ρα
1 (N, v, dIS)

κα
1 (N, v, dIS)

≥
ρα

i (N, v, d)

κα
i (N, v, d)

, i = 1, 2, . . . , n. (5)

Proof:

27



It is obvious that for (N, v) ∈ APN ∩ SN
0 , ρα

1 (N, v, dIS) = κα
1 (N, v, dIS), and the left

hand side in (5) is equal to 1. Being the game almost positive ρα
i (N, v, d) ≤ κα

i (N, v, d)

for all i ∈ N and thus the result is proved.

Symmetrically we have the next result for emission centrality.

Proposition 4.3 Given (N, v, dOS) ∈ DCN
APS0

and dOS = {(1, i), i ∈ N \ {1}}, for all

(N, d) ∈ DN and α ∈ [0, 1].

ǫα
1 (N, v, dOS)

κα
1 (N, v, dOS)

≥
ǫα
i (N, v, d)

κα
i (N, v, d)

, i = 1, 2, . . . , n. (6)

In next proposition it is proved that in a oriented chain, for almost positive and

symmetrical games, the emission centrality is maximal in the inital node whereas reception

centrality is maximal in the last node. Moreover betweeness centrality increases from the

first node to the median one. We will suppose in order to simplify the proof, that the

chain has an odd number of nodes.

Proposition 4.4 Given (N, v, d) ∈ DCN
APS0

and d = {(1, 2), (2, 3), . . . , (n−1, n)} (n odd)

an oriented chain, for all α ∈ [0, 1],

ǫα
1 (N, v, d) ≥ ǫα

i (N, v, d), i = 1, 2, . . . , n, (7)

ρα
n(N, v, d) ≥ ρα

i (N, v, d), i = 1, 2, . . . , n, (8)

βα
m(N, v, d) ≥ βα

i (N, v, d), i = 1, 2, . . . ,m− 1, m being the median node. (9)

Proof: As for every (N, v) ∈ APN
0 , v is a linear combination of {v2, . . . , vn} with non

negatives scalars, it is sufficient to prove the results for each vk, k = 2, . . . , n.

Then (7) holds because for k = 2, 3, . . . , n and α ∈ [0, 1]

ǫα
i (N, vk, d) =





αk−1
∑k−1

r=0 αr
for i = 1, 2, . . . , n− k + 1

0 i = n− k, . . . , n.

Analogously (8) is satisfied as for α ∈ [0, 1],

ρα
i (N, vk, d) =





1∑k−1
r=0 αr

i = k, . . . , n

0 i = 1, 2, . . . , k − 1.
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Finally, in order to prove (9), consider α ∈ [0, 1] and i ∈ N, i ≤ m. An ordered set of

size k, with 3 ≤ k ≤ n, containing i, connected in (N, d) and where i has a non extreme

position is:

T (i, r, k) = (i− r + 1, i− r, . . . , i− 1, i, i + 1, . . . , i + k − r)

with max{2, i + k − n} ≤ r ≤ min{i, k − 1}.

Then, for 3 ≤ k ≤ n,

βα
i (N, vk, d) =

min{i,k−1}∑

r=max{2,i+k−n}
k!Ψα

i (N, wT (i,r,k)) =

=

min{i,k−1,i+k−m−1}∑

r=max{2,i+k−n}
k!Ψα

i (N, wT (i,r,k)) +

min{i,k−1}∑

r=i+k−m

k!Ψα
i (N, wT (i,r,k)) ≤

≤

min{i,k−1,i+k−m−1}∑

r=max{2,i+k−n}
k!Ψα

m(N, wT (i,r,k)) +

min{i,k−1}∑

r=i+k−m

k!Ψα
i (N, wT (i,r,k)),

last inequallity holding because for r ≤ i + k−m− 1 we have m ≤ i + k− r− 1 and thus

m ∈ T (i, r, k) and

Ψα
i (N, wT (i,r,k)) =

αk−r

∑k−1
l=0 αl

≤ Ψα
m(N, wT (i,r,k)).

as m(T (i, r, k)) ≥ r.

On the other hand, (because m is the median node), for each r = i + k −

m, . . . ,min{i, k − 1},

Ψα
i (N, wT (i,r,k)) =

αk−r

∑k−1
l=0 αl

,

and it exists T (m, r, k) such that Ψα
m(N, wT (m,r,k)) = Ψα

i (N, wT (i,r,k)). Thus,

βα
i (N, vk, d) ≤

min{i,k−1,i+k−m−1}∑

r=max{2,i+k−n}
k!Ψα

m(N, wT (i,r,k))+

+

min{i,k−1}∑

r=i+k−m

k!Ψα
m(N, wT (m,r,k)) ≤ βα

m(N, vk, d),

this last inequality holding because βα
m(N, vk, d) contains at least all the terms in both

summatories of the left hand side but possibly additional non negative terms.
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The proof of last proposition suggests some additional properties in the special case

in which the measure does not distinguish the positions of iniciator or receiver in the

communication. That is, the case α = 1.

Corollary 4.1 Given (N, v, d) ∈ DCN
APS0

and d = {(1, 2), (2, 3), . . . , (n − 1, n)} (n odd)

an oriented chain, we have

ǫ1
i (N, v, d) = ρ1

n−i+1(N, v, d), i = 1, 2, . . . , n,

β1
m(N, v, d) ≥ β1

i (N, v, d), i = 1, 2, . . . , n.

5 An example: A model of simplified soccer

Suppose a simplified game of soccer played by two teams with five players each: the goal

keeper, two defenders, two middles and one forward. We can model with an arc (i, j)

the fact that player i pass the ball to player j. If this is the last arc of a sequence of

passes, two possibilities are opened: j shots to the goal or he looses the ball which is

intercepted by a rival. Of course, a match consists of many plays (sequences of passes)

but in the following example, adding another symplification, we will suppose that the two

teams A and A’ have completed only three plays which are given by digraphs d1, d2, d3

and d′1, d
′
2, d

′
3 respectivly.

1 2 3 

5

4

3 4 5 

1 2 

1

4
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(N,d
1
)

(N,d
2
)

(N,d
3
)

1 5 

2 3 4 

(N,d'
1
)

2 43

2 54

1 3 

(N,d'
2
)

1 5

(N,d'
3
)

Figure 1: Teams A and A’
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Assuming d1 finishes in the unique goal of the match, we obtain the centrality (and

its decomposition) of each player in each digraph (play) and the expected centrality in

the match. This expected value assumes for team A a weight of 0.5 for the play of the

goal and equal weights for the other two plays, while for team A’ it is supposed an equal

weight for the three plays. And thus we will use καA = 1
2
κα(N, v, d1) + 1

4
κα(N, v, d2) +

1
4
κα(N, v, d3), and καA′ = 1

3
κα(N, v, d′1) + 1

3
κα(N, v, d′2) + 1

3
κα(N, v, d′3) for the expected

centralities in the match for teams A and A′ respectively. Analogously ǫαA, βαA, ραA,

and ǫαA′, βαA′, ραA′ will represent the expected values for teams A and A′ for the three

components of centrality.

As it is obvious, the emission centrality of each player can be viewed as an index of

his participation in the game as initiator of plays (tipically this centrality must be higher

for goal keeper and defenders) while his betweenness centrality measures the ability to

intermediate in the plays (greater for middles) and finally his reception centrality informs

us about his shots to the goal and his lost balls (in general greater for forwards).

We will use the conferences game and several values of α ∈ [0, 1]. In particular, 0,

0.5 and 1. These values can be considered as a measure of the relative difficulty when

comparing to pass the ball versus to control it. As in the special case of α = 0 the

total centrality in each play coincides with the reception one, we will omit the remaining

components.

Moreover the total centralty of each team when comparing with others teams can

give an idea about the differences in the style when playing or in the strategy used. The

more total centrality, the more elaborated its game is. The corresponding results are

summarized in the following tables.
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Tables for team A

α = 0 κα
i (N, v, d1) ρα

i (N, v, d1) κα
i (N, v, d2) ρα

i (N, v, d2) κα
i (N, v, d3) ρα

i (N, v, d3) κα
i ρα

i

i = 1 0 0 0 0 0 0 0 0

i = 2 1 1 0 0 3 3 1.25 1.25

i = 3 3 3 2 2 3 3 2.75 2.75

i = 4 3 3 2 2 3 3 2.75 2.75

i = 5 4 4 2 2 0 0 2.5 2.5

α = 1 κα
i (N, v, d1)

ǫα
i (N, v, d1)

βα
i (N, v, d1)

ρα
i (N, v, d1)

κα
i (N, v, d2)

ǫα
i (N, v, d2)

βα
i (N, v, d2)

ρα
i (N, v, d2)

κα
i (N, v, d3)

ǫα
i (N, v, d3)

βα
i (N, v, d3)

ρα
i (N, v, d3)

κα
i

ǫα
i

βα
i

ρα
i

i = 1 1.333

1.333

0

0

0

0

0

0

1.083

1.083

0

0

0.937

0.937

0

0

i = 2 2.5

1.166

0.833

0.5

0

0

0

0

3.083

0.833

0.916

1.333

2.021

0.792

0.646

0.583

i = 3 3.833

1

1.5

1.333

2

0.833

0.333

0.833

2.583

0.833

0.583

1.166

3.062

0.916

0.979

1.166

i = 4 1.916

0.833

0

1.083

2

0.833

0.333

0.833

2.25

0.833

0.333

1.083

2.021

0.833

0.166

1.021

i = 5 1.416

0

0

1.146

2

0.833

0.333

0.833

0

0

0

0

1.208

0.025

0.083

0.916
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α = 0.5 κα
i (N, v, d1)

ǫα
i (N, v, d1)

βα
i (N, v, d1)

ρα
i (N, v, d1)

κα
i (N, v, d2)

ǫα
i (N, v, d2)

βα
i (N, v, d2)

ρα
i (N, v, d2)

κα
i (N, v, d3)

ǫα
i (N, v, d3)

βα
i (N, v, d3)

ρα
i (N, v, d3)

κα
i

ǫα
i

βα
i

ρα
i

i = 1 0.609

0.609

0

0

0

0

0

0

0.543

0.543

0

0

0.440

0.440

0

0

i = 2 1.838

0.619

0.552

0.666

0

0

0

0

3.086

0.476

0.704

1.904

1.690

0, 428

0.452

0.809

i = 3 3.962

0.666

1.390

1.905

2

0.476

0.285

1.238

2.838

0.476

0.552

1.809

3.190

0.571

0.904

1.714

i = 4 2.247

0.476

0

1.771

2

0.476

0.285

1.238

2.533

0.476

0.285

1.638

2.257

0.476

0.143

1.638

i = 5 2.343

0

0

2.343

2

0.476

0.285

1.238

0

0

0

0

1.671

0.119

0.071

1.481

Analogously the centralities and their decomposition for players in team A’ are:

α = 0 κα
i (N, v, d′1) ρα

i (N, v, d′1) κα
i (N, v, d′2) ρα

i (N, v, d′2) κα
i (N, v, d′3) ρα

i (N, v, d′3) κα
i ρα

i

i = 1 0 0 0 0 0 0 0 0

i = 2 0 0 0 0 0 0 0 0

i = 3 0 0 1 1 1 1 0.333 0.333

i = 4 0 0 2 2 2 2 1 1

i = 5 1 1 0 0 0 0 1 1
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α = 1 κα
i (N, v, d′1)

ǫα
i (N, v, d′1)

βα
i (N, v, d′1)

ρα
i (N, v, d′1)

κα
i (N, v, d′2)

ǫα
i (N, v, d′2)

βα
i (N, v, d′2)

ρα
i (N, v, d′2)

κα
i (N, v, d′3)

ǫα
i (N, v, d′3)

βα
i (N, v, d′3)

ρα
i (N, v, d′3)

κα
i

ǫα
i

βα
i

ρα
i

i = 1 0.5

0.5

0

0

0

0

0

0

0

0

0

0

0.166

0.166

0

0

i = 2 0

0

0

0

0.833

0.833

0

0

0.833

0.833

0

0

0.555

0.555

0

0

i = 3 0

0

0

0

0

0

0

0

1.333

0.5

0.333

0.5

0.444

0.166

0.111

0.166

i = 4 0

0

0

0

1.333

0.5

0.333

0.5

0.833

0

0

0.833

0.722

0.166

0.111

0.444

i = 5 0.5

0

0

0.5

0.833

0

0

0.833

0

0

0

0

0.444

0

0

0.444

α = 0.5 κα
i (N, v, d′1)

ǫα
i (N, v, d′1)

βα
i (N, v, d′1)

ρα
i (N, v, d′1)

κα
i (N, v, d′2)

ǫα
i (N, v, d′2)

βα
i (N, v, d′2)

ρα
i (N, v, d′2)

κα
i (N, v, d′3)

ǫα
i (N, v, d′3)

βα
i (N, v, d′3)

ρα
i (N, v, d′3)

κα
i

ǫα
i

βα
i

ρα
i

i = 1 0.333

0.333

0

0

0

0

0

0

0

0

0

0

0.111

0.111

0

0

i = 2 0

0

0

0

0.476

0.476

0

0

0.476

0.476

0

0

0.317

0.317

0

0

i = 3 0

0

0

0

0

0

0

0

1.285

0.333

0.285

0.666

0.428

0.111

0.095

0.222

i = 4 0

0

0

0

1.285

0.333

0.285

0.666

1.238

0

0

1.238

0.828

0.111

0.095

0.635

i = 5 0.666

0

0

0.666

1.238

0

0

1.238

0

0

0

0

0.635

0

0

0.635

Finally let us compare some of the previous centralities with other defined ranks for

nodes in digraphs.

With a similar framework to the proposed here, Amer el al. (2007) define for a

digraph communication situation (N, v, d) a new digraph restricted game vd (a gen-

eralized TU one) as vd(T ) =
∑

R∈MCT
d

v(H(R)) for all T ∈ Ω(N), where MCT
d =

{R⊂̃T such that R is maximal connected set in (N, d)}. The accessibility of each given

node i is defined by:

αi(N, v, d) = Ψ0(N, vd), for i ∈ N.
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Then, the normalized accesibilities of players of team A in the different plays:

α(N, v, d1) = (0, 0.082, 0.246, 0.294, 0.376),

α(N, v, d2) = (0, 0, 0.333, 0.333, 0.333),

α(N, v, d3) = (0, 0.313, 0.313, 0.373, 0),

are similar and with the same order for diferent nodes, to the corresponding centralities

for α = 0.

The centrality based on the eigenvector corresponding to the dominant eigenvalue of

the adjacency matrix is, for d1, d2, and d3 respectively.

(0.25, 0.25, 0.25, 0.25, 0),

(0, 0, 0.333, 0.333, 0.333),

(0.25, 0.25, 0.25, 0.25, 0).

In this case the differences with respect the ones we propose here are obvious. We

think that at least for these examples the eigenvalue measure does not emphasize all the

existing differences in the nodes connections.

In van den Brink and Borm (2002) authors introduce a model in which they summarize

the results of matches in sports competitions between the teams in a given set N by means

of a digraph competition. In this model, the competition digraph includes an arc (i, j) if

and only if j did not lose the match it played agains i. The model we propose in this work

is not suitable for this type of situations. The use of almost positive games implies the

stability of the associated allocation rule (for any α ∈ [0, 1]) and thus when modeling a

draw as two victories (one for each of the teams in the match) the draws will be excesively

rewarded.

6 Conclusions

This paper proposes a new instrument to measure centrality of nodes in directed networks

following our previous work (Gómez et al. 2003). Actors in the network are simultane-

ously players in a cooperative game. This game represents the interests that motivate the
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interactions among actors, whereas directed network imposes restrictions in the coopera-

tion. Given the (directed) network and the game, a new (generalized) restricted game is

obtained.

In the literature there are many centrality measures, but they usually assume the links

are undirected, i.e., both agents connected by a link equally benefit from its existence. In

the present paper, we will consider the directed case.

In our proposal, the centrality of nodes is measured as the difference between:

(i) the Shapley value (this is assumed to be the node’s payoff/power when no digraph

is binding the interaction among agents), and

(ii) a new value for generalized TU games belonging to a parametric family that

contains the two existing ones defined by Nowak and Radzik (1994) and Sánchez and

Bergantiños (1997). This new index is interpreted as the nodes’ payoff/power considering

the restrictions imposed by the directed network on the interaction possibilities among

agents. In particular, this index weights the specific ranking among agents derived from

the directed network structure.

The paper discuses several properties of these measures. For each α ∈ (0, 1], the corre-

sponding measure is characterized in terms of efficiency and α-directed fairness properties.

In the case α = 0, a symmetry axiom is also needed.

This characterization must be interpreted in a double sense: first, it fixes the range

of variation of our measure and second, it highlights the fact that the initiator and the

receiver do not necessarily play symmetrical roles in the type of analyzed relations. Of

course, other measures can be obtained with different properties and with alternative

characterizations. Even, the proposed measures probably admit characterizations based

on alternative properties.

In this paper we also point to some problems concerning the fact that nodes of which

centralities should be clearly different in two different networks have the same outcome of

the measure. This inspires us the idea that the proposed measures are a sort of a specific

module of the centrality. This centrality perhaps can be thought as a vector measure

instead of a scalar one. With this idea in mind, we additively decompose each one of

our measures in three different ones, that can be seen as components or factors of the

centrality in the dimensions of emission, reception and betweenness.
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