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Abstract

In this paper we deal with TU games in which cooperation is restricted by means
of a weighted network. We admit several interpretations for the weights of a link:
capacity of the communication channel, flow across it, intimacy or intensity in the
relation, distance between both incident nodes/players, cost of building or main-
taining the communication link or even probability of the relation (as in Calvo et
al., 1999). Then, accordingly with the different interpretations, we introduce several
point solutions for these restricted games in a parallel way to the familiar environ of
Myerson. Finally, we characterize these values in terms of the (adapted) component
efficiency, fairness and balanced contributions properties and we analyze the extend
to which they satisfy the stability property.

Key words: TU-game, weighted graph, Myerson value, fairness, balanced
contributions, stability.
1991 MSC: 91A06,91A12.

1 Introduction

A cooperative TU game describes a situation in which several actors can obtain
certain transferable payoffs by means of the cooperation. Mathematically a TU
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game is a set of players and a characteristic function that assigns to each subset
of players (coalition) a real number representing the worth of the coalition.

In this paper we deal with TU games in which the cooperation is restricted by
means of a weighted network. The seminal work on games in which restrictions
in the cooperation are given by a graph is debt to Myerson (1977). He assumed
that the nodes in the graph are the players in the game, each link representing
a direct bilateral communication channel. From this starting point, he defined
the graph-restricted game and proposed as a point solution for players in this
environ the so called Myerson value, i.e., the Shapley value of the restricted
game. Moreover he characterized this value in terms of components efficiency
and fairness. Later, Myerson (1980) gave another characterization of his value
substituting fairness by balanced contributions.

In the Myerson model, bilateral restrictions in the communication are di-
chotomous: they exist or they do not. Nevertheless, as has long been appre-
ciated, each direct connection can be only partially limited. This leads to use
a weighted graph as a model of the restrictions in the communications. A
weighted graph consists of a set of nodes and a set of links, each link having
an associated weight, a non-negative real number that can be interpreted in
different ways: the capacity or the capability of the communication channel,
the flow across it, the degree of intimacy, intensity or frequency if the link
represents a social relation, the distance between both incident nodes, or even
the cost of building or maintaining the communication link. Calvo et al. (1999)
introduced a probabilistic model in which the weight of a link is the probabil-
ity of to establish the relation, these probabilities being independent. Later,
Gómez et al. (2008) generalized this probabilistic model dropping out the
independence hypothesis. In a related context, Jiménez-Losada et al. (2010)
consider cooperative TU games with Choquet players in which the restrictions
in the communications are modeled using an (undirected) fuzzy graph 1 .

In this paper we introduce point solutions for games with restrictions in the
communications modeled by a weighted graph, following a parallel way to the
familiar territory of Myerson.

In a TU game, each set of players is able to obtain its total dividend (Harsanyi,
1959). The Myerson underlying idea is that, under restrictions in the commu-
nications every coalition that can be connected in the graph (eventually using
intermediaries) obtains all its dividend in the game. Otherwise, i.e., in absence
of connectedness, its dividend vanishes. And thus, the binary framework of
communication is projected in an all or nothing possibility of obtaining the
dividend. Nevertheless, the weighted graph introduces a non dichotomous but
fuzzy scheme of relations. In accordance with this, we propose to consider a

1 For details on fuzzy graphs, reader can see Mordeson and Nair (2000)
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weighted-graph game in which players weighted-link connected obtain a part
but not all their dividend and the lack of connectedness leading, of course,
to loose the dividend. We introduce several forms of calculating this fraction
of the dividend taking into account various alternative interpretations of the
weights. Then, we use the Shapley value of the corresponding weighted-graph
restricted game as an appropriated solution concept for this situation and we
characterize it in terms of the (adapted to this framework) component effi-
ciency, fairness and balanced contributions properties. Finally, we explore the
extent to which the defined values satisfy the stability property.

The remaining of the paper is organized as follows. In Section 2 we introduce
some notation and preliminaries; in Section 3 we define the weighted-graph re-
stricted games and the different extensions of Myerson value accordingly with
the various interpretations of the weights. Section 4 is devoted to characterize
the defined values. In Section 5 we deal with the stability property and the
paper ends with a section of final remarks and conclusions.

2 Preliminaries

A cooperative n-person game or a TU-game is a pair (N, v), N = {1, . . . , n}
being the set of players and v, the characteristic function, a map v : 2N → R
satisfying v(∅) = 0. For each coalition S ⊂ N , v(S) represents the transferable
utility that S can obtain whenever its members cooperate.

We will note GN the set of all TU-games with players set N . It is easy to see
that GN is a vector space. The game (N, uS), ∅ 6= S ⊂ N , with characteristic
function given by:

uS(T ) =

 1, if S ⊂ T

0, otherwise

is known as the unanimity game corresponding to S. The family of all games
{(N, uS)}∅6=S⊂N is a very usefull basis of GN . As a consequence, the charac-
teristic function v of every game in GN can be written as a linear combination
of unanimity characteristic functions:

v =
∑
∅6=S⊂N

∆v(S)uS.

The coefficients (coordinates) of v in such a basis are known as Harsanyi
dividends (Harsanyi, 1959). The worth of every coalition S can be written in
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terms of its Harsanyi dividends. For each S ⊂ N , S 6= ∅:

v(S) =
∑
∅6=T⊂S

∆v(T ).

A very popular point solution for TU-games is the Shapley value (Shapley,
1953), which assigns to every player the following convex linear combination
of his marginal contributions to different coalitions:

Shi(N, v) =
∑

S⊂N\{i}

(n− s− 1)!s!

n!
(v(S ∪ {i})− v(S)), i ∈ N.

An alternative expression for this value in terms of the dividends is:

Shi(N, v) =
∑

i∈S⊂N

∆v(S)

s!
.

A graph or a network is a pair (N, γ), N = {1, 2, . . . , n} being the set of nodes
and γ a subset of γN = {{i, j}, i, j ∈ N, i 6= j}. Each link {i, j} ∈ γ represents
a direct relation or a communication channel between i and j. ΓN denotes the
set of all graphs with nodes set N .

Given a graph (N, γ) ∈ ΓN , we will say that two nodes i and j are directly
connected in γ if {i, j} ∈ γ. And we will say they are connected in γ if it exists
a sequence of nodes i1, i2, . . . ik with i1 = i, ik = j such that {il, il+1} ∈ γ,
for l = 1, . . . , k − 1. A set S ⊂ N is connected in γ if every pair of nodes in
S is connected. A connected component, C, of the graph (N, γ) is a maximal
connected subset. That is, C is connected and, for all C ′ ⊂ N , if C ⊂ C ′ and
C 6= C ′, then, C ′ is not connected. A graph (N, γ) induces a partition N/γ of
the set N in connected components.

Given a set S ⊂ N and a graph (N, γ), the restriction of the graph γ to the set
S is the graph (S, γ|S). We will note S/γ the set of the connected components
of S in (S, γ|S). A subgraph of a graph (N, γ) is a graph (N, γ′) with γ′ ⊆ γ.

Given a graph (N, γ) and a link l ∈ γ, (N, γ \ {l}) is the subgraph obtained
when the relation l is severed and (N, γ−i) is the resulting subgraph when all
the incident in i links are broken and then i becomes an isolated node in the
resulting graph.

Given (N, γ) ∈ ΓN and (R, γ|R), its restriction to R ⊆ N , we will call connec-
tion subgraph of S ⊆ R in (R, γ|R) to each graph (D(η), η) such that:

i) η ⊆ γ|R and S is connected in η

ii) D(η) = {i ∈ N sucht that it exists j ∈ N with l = {i, j} ∈ η}
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A connection subgraph of S ⊆ R in (R, γ|R) is minimal if there is no other con-
nection subgraph (D(η′), η′) of S in (R, γ|R) with η′  η. Given a graph (N, γ)
and S ⊆ R ⊆ N we will denote CG(S,R, γ) (respectively, MCG(S,R, γ)) to
the family of all (minimal) connection graphs of S ⊆ R in (R, γ|R).

A communication situation is a triple (N, v, γ), (N, v) being a TU game and
(N, γ) a graph. The set of all communication situations with players-nodes set
N will be noted CSN . An allocation rule ψ on CSN is a map ψ : CSN → Rn,
ψi(N, v, γ) representing the outcome for player i in game (N, v) given the
restrictions in the communication imposed by the graph (N, γ).

The Myerson value (Myerson, 1977) is the allocation rule µ on CSN defined
by:

µ(N, v, γ) = Sh(N, vγ), where vγ(S) =
∑
C∈S/γ v(C), for all S ⊆ N .

Myerson (1977) characterized this allocation rule in terms of component ef-
ficiency (for all C ∈ N/γ,

∑
i∈C µi(N, v, γ) = v(C)) and fairness (for each

l = {i, j} ∈ γ, ψi(N, v, γ)− ψi(N, v, γ \ {l}) = ψj(N, v, γ)− ψj(N, v, γ \ {l})).
He also characterized (Myerson, 1980) this allocation rule in terms of com-
ponent efficiency and balanced contributions (given i, j ∈ N, ψi(N, v, γ) −
ψi(N, v, γ−j) = ψj(N, v, γ)− ψj(N, v, γ−i)).

3 Values for weighted communication situations

In this section we admit several interpretations for weights in a graph and
we accordingly define several weighted-graphs restricted games for players in-
volved in a TU game with restrictions in the connections given by such a
weighted network. Finally, we propose several values that generalize the clas-
sical Myerson one.

3.1 Weighted graphs

Definition 3.1 A weighted graph or a weighted network is a pair (N, γw),
N = {1, . . . , n} being a set of nodes and γw = {γ, {wl}l∈γ}, with γ ∈ ΓN and
the weights wl ≥ 0, for all l ∈ γ. We will denote ΓNw the set of all weighted
graphs with nodes set N .

The weights wl in a weighted network can admit many different interpreta-
tions. If the network is viewed as a model of communications or transport
among its nodes, weights can be interpreted as the capacities of the com-
munication channels and then, we would assume wl ∈ (0, 1] for all l ∈ γ.
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Alternatively, weights can be viewed as flow values in the network and so
wl ∈ [0,∞) (or wl ∈ [0, kl], if we suppose that each channel has a bounded
flow). Sometimes, the network will describe the social relations among actors
and in this case, a reasonable meaning of weights is that they measure inten-
sity, intimacy or frequency of bilateral relations. So, for that situations, we
will assume wl ∈ (0, 1]. Weights can also represent distances between nodes or
even costs of to create or to maintain links. In this last case, wl ∈ [0,∞), for all
l ∈ γ. Calvo et al. (1999) propose to interpret each weight as the probability
of the corresponding relation and to assume the links independence.

We will say that two nodes i, j ∈ N are directly connected (connected) in
the weighted graph (N, γw) if they are directly connected (connected) in the
graph (N, γ). As a consequence, the set of connected components in (N, γw),
that we will call N |γw, coincides with N |γ.

We will note (N, γw\{l}) the weighted subgraph of (N, γw) given by
(N, (γ\{l})w\{wl}) in which all the links l′ 6= l have the corresponding weight
in (N, γw). We will also note (N, γw

−k) the weighted subgraph obtained from
(N, γw) when deleting all the incident in k links and, obviously, its associated
weights, i.e., (N, γw

−k) = (N, (γ−k){wl}l∈γ−k ).

3.2 Weighted-graph restricted games

Definition 3.2 A weighted communication situation is a triplet (N, v, γw) in
which (N, v) a TU-game and (N, γw) is a weighted network, the nodes in the
network being the players in the game.

In accordance with the different meanings of weights, we can distinguish four
particular families inWCSN , the set of all weighted communication situations
with players set N : the classes WCSN,c, WCSN,d, WCSN,f and WCSN,p, re-
spectively including the c-weighted communication situations (c for capacity)
in which weights represent capacities of channels or intimacy in the relations,
the d-weighted communication situations (d for distance), the f -weighted com-
munication situations (f for flow) and the p-weighted communication situations
(p for probability).

Definition 3.3 Given (N, v, γw) a weighted communication situation, we de-
fine the weighted-graph restricted game as the TU-game in GN with charac-
teristic function:

vγw(S) =
∑
R∈S|γ

vγw(R)
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where for R ∈ S|γ,

vγw(R) =
∑
T⊂R

∆v(T )αRT ({wl}),

αRT ({wl}) ∈ [0, 1] being the proportion of the dividend ∆v(T ) that the coalition
T ⊂ R retains as a consequence of the communication channels capacities, or
because of the difficulties to establish connections created by costs, distances
or flows, or because of the intensity or frequency in the relations. When there
is no ambiguity with respect the weights {wl}l∈γ we will simplify the notation
writing αRT instead of αRT ({wl}).

For each interpretation of the weights wl, l ∈ γ we will try to define this
αRT , for T ⊂ R in a consistent way. Let {ηT,R1 , ηT,R2 , ..., ηT,Rt(R)}=MCG(T,R, γ) 2

the family of all minimal connection graphs of T ⊆ R in (R, γ|R). Then we
propose:

• If (N, v, γw) ∈ WCSN,c, wl represents the capacity or the intensity or the
intimacy of link l. Then:

αRT = max
i=1,...,t(R)

min
l∈ηT,Ri

{wl}, for |T | ≥ 1, and αRT = 1, otherwise.

In the previous expression it is assumed that the possibilities of communi-
cation or transport are bounded by the capacity of the channel (the minimal
capacity of its links). If several alternatives are available for players, then
they will prefer the one in which the minimal capacity is maximal. Sim-
ilarly it seems natural to assume that the intimacy or confidence among
several actors is at most the minimal of the bilateral ones. When a set of
actors want to relate themselves they choose among the possible interme-
diaries those ones such that the minimal total intimacy (or confidence) is
maximal.
• If (N, v, γw) ∈ WCSN,d, wl represents the distance between the two incident

nodes in the link l or the cost of to create or to maintain this link. Then:

αRT = max
i=1,...,t(R)


1

1 +
∑

l∈ηT,Ri

wl

 , for |T | ≥ 1, and αRT = 1, otherwise 3 .

2 The same definitions will be obtained if, instead of MCG(T,R, γ), we use
CG(T,R, γ) or even any subset of CG(T,R, γ) containingMCG(T,R, γ). For details,
see Gómez et al. (2004).
3 Besides αRT depends on the meaning of the weights, this dependence will be no-
tationally ignored.
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Here, we assume that the communication possibilities decrease with the dis-
tance or the cost. If several minimal connection graphs are available, then
the geodesic (minimal total distance) or minimal cost ones are preferred.

• If (N, v, γw) ∈ WCSN,f , wl represents the flow between the two incident
nodes in the link l. Then:

αRT = max
i=1,...,t(R)


1

1 + max
l∈ηT,Ri

wl

 , for |T | ≥ 1, and αRT = 1, otherwise.

Here, we assume that the communication possibilities decrease with the flow
(or the traffic intensity). If several alternatives are possible then the one in
which the traffic jam is minimal will be preferred.
• If (N, v, γw) ∈ WCSN,p, we are in fact considering the model in Calvo et al.

(1999), and thus:

αRT =
t(R)∑
i=1

∏
l∈ηT,Ri

wl −
∑
i<j

∏
l∈ηT,Ri

⋃
ηT,Rj

wl + · · ·+ (−1)t(R)+1
∏

l∈
⋃t(R)

j=1
ηT,Rj

wl,

for |T | ≥ 1, and αRT = 1, otherwise.

In this case, αRT can be interpreted as the probability of connecting T with
links between members of R in a random selected graph with independent
links which probabilities are the weights.

Remark 3.1 The Myerson approach can be considered as a particular case
of each one of the previous situations. In fact, if for (N, v, γw) ∈ WCSN,c,
wl = 1 for all l ∈ γ, so that the capacities are not restricted, then we find the
un-weighted graph case of Myerson. Analogously, for (N, v, γw) ∈ WCSN,d,
the case of null distances or costs leads to the Myerson model. Similarly, for
(N, v, γw) ∈ WCSN,f the case of null flow or traffic intensity gives the My-
erson model. Finally, it is known that probabilistic communication situations
generalize the deterministic case of Myerson in which links are dichotomous.
In all of these cases, given a weighted communication situation (N, v, γw), for
all T ⊆ R ⊆ N with R connected in γ, αRT = 1 holds. As a consequence, CSN ,
the set of all determinist communication situations can be viewed as a subset
of WCSN,c, WCSN,d, WCSN,f and WCSN,p.

Remark 3.2 The given definitions of αRT are consistent also with the idea of
continuity in the following sense. Given (N, v, γw) and (N, v, (γw \ {l∗})) ∈
WCSN,c (or ∈ WCSN,p), then for all T ⊆ R ⊆ N , αRT ({wl})→ αRT (w \ {wl∗})
if wl∗ → 0. Similarly given (N, v, γw) and (N, v, (γw \ {l∗})) ∈ WCSN,d (or
∈ WCSN,f) then, for all T ⊆ R ⊆ N , αRT ({wl})→ αRT (w \ {wl∗}) if wl∗ →∞.
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In the next propositions, given a weighted graph, we obtain the corresponding
restricted game for each unanimity one.

Proposition 3.1 Let (N, uT , γw) ∈ WCSN,c, T ⊆ N . If MCG(T,N, γ) =
{ηT1 , . . . , ηTt(N)} 4 and βηTi = minl∈ηTi {wl} for i = 1, . . . , t(N), then:

i) uγwT =
t(N)∑
i=1

βηTi uD(ηTi )
−
∑
i<j

min{βηTi , βηTj }uD(ηTi ∪η
T
j )

+ · · ·+

+(−1)t(N)−1 min
i=1,...,t(N)

{βηTi }uD(∪t(N)
i=1 ηTi )

, if |T | > 1 and MCG(T,N, γ) 6= ∅

(1)
ii) uγwT = 0, if |T | > 1 and MCG(T,N, γ) = ∅

iii) uγwT = uT if |T | = 1.

Proof: To prove i), consider S ⊆ N . If T * S then, by the definition of
uγwT , u

γw
T (S) = 0 as no coalition with dividend different from zero is contained

in S. On the other hand, the set of nodes of each minimal connection graph
of T in N contains by definition all nodes in T and thus the characteristic
function in the right hand term of (1) evaluated in S gives also 0.

Let us then consider the case in which S ⊆ N is such that T ⊆ S and S
is connectable in γ, i.e., S is a subset of a connected component of N in γ.
If S is not connectable in γ, we would consider the intersection R of S with
the connected component of N in γ containing T and we would suppose that
this intersection still contains T . Otherwise the previous reasoning applies
and both members in (1) applied to R give zero. So, let us suppose that
MCG(T, S, γ) = {ηT,S1 , . . . ηT,St(S)}. Of course MCG(T, S, γ) ⊆ MCG(T,N, γ).
Then,

uγwT (S) = αST ({wl}) = max
i=1,...,t(S)

min
l∈ηT,Si

{wl}

and, assuming without lost of generality that ηT,S1 , . . . , ηT,St(S) are ordered so that
βηT,S1

≤ βηT,S2
≤ · · · ≤ βηT,S

t(S)
,

(
t(N)∑
i=1

βηTi uD(ηTi )
−
∑
i<j

min{βηTi , βηTj }uD(ηTi ∪η
T
j )

+ · · ·+

+(−1)t(N)−1 min
i=1,...,t(N)

{βηTi }uD(∪t(N)
i=1 ηTi )

)(S) =

= (
t(S)∑
i=1

βηT,Si
uD(ηT,Si ) −

∑
i<j

min{βηT,Si
, βηT,Sj

}uD(ηT,Si ∪ηT,Sj ) + · · ·+

+(−1)t(S)−1 min
i=1,...,t(S)

{βηT,Si
}u

D(∪t(S)i=1 η
T,S
i )

)(S) =

4 As we consider the minimal connection graphs of T in (N, γ), we simplify the
notation using ηTi instead of ηT,Ni
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=
t(S)∑
i=1

βηT,Si
−
∑
i<j

min{βηT,Si
, βηT,Sj

}+ · · ·+ (−1)t(S)−1 min
i=1,...,t(S)

{βηT,Si
} =

=
t(S)∑
i=1

βηT,Si
−
t(S)−1∑
i=1

(
t(S)− i

1

)
βηT,Si

+
t(S)−2∑
i=1

(
t(S)− i

2

)
βηT,Si

+· · ·+(−1)t(S)−1
1∑
i=1

(
t(S)− i
t(S)− 1

)
βηT,Si

=

= βηT,S1

t(S)−1∑
j=0

(−1)j
(
t(S)− 1

j

)
+βηT,S2

t(S)−2∑
j=0

(−1)j
(
t(S)− 2

j

)
+· · ·+βηT,S

t(S)−1

1∑
j=0

(−1)j
(

1

j

)
+βηT,S

t(S)
=

= βηT,S
t(S)

= max
i=1,...,t(S)

βηT,Si
= max

i=1,...,t(S)
min
l∈ηT,Si

{wl},

as
t(S)−k∑
j=0

(−1)j
(
t(S)− k

j

)
= 0, for all k = 1, . . . , t(S)− 1.

The proof of ii) and iii) is trivial. �

The proof of the next propositions follows the steps of the previous one and
then it is omitted.

Proposition 3.2 Let (N, uT , γw) ∈ WCSN,d, T ⊆ N . If MCG(T,N, γ) =
{ηT1 , . . . , ηTt(N)} and βηTi = 1

1+
∑

l∈ηT
i
wl

for i = 1, . . . , t(N), then

i) uγwT =
t(N)∑
i=1

βηTi uD(ηTi )
−
∑
i<j

min{βηTi , βηTj }uD(ηTi ∪η
T
j )

+ · · ·+

+(−1)t(N)−1 min
i=1,...,t(N)

{βηTi }uD(∪t(N)
i=1 ηTi )

, if |T | > 1 and MCG(T,N, γ) 6= ∅

ii) uγwT = 0, if |T | > 1 and MCG(T,N, γ) = ∅
iii) uγwT = uT if |T | = 1

Proposition 3.3 Let (N, uT , γw) ∈ WCSN,f , T ⊆ N . If MCG(T,N, γ) =
{ηT1 , . . . , ηTt(N)} and βηTi = 1

1+max
l∈ηT

i
wl

for i = 1, . . . , t(N), then

i) uγwT =
t(N)∑
i=1

βηTi uD(ηTi )
−
∑
i<j

min{βηTi , βηTj }uD(ηTi ∪η
T
j )

+ · · ·+

+(−1)t(N)−1 min
i=1,...,t(N)

{βηTi }uD(∪t(N)
i=1 ηTi )

, if |T | > 1 and MCG(T,N, γ) 6= ∅

ii) uγwT = 0, if |T | > 1 and MCG(T,N, γ) = ∅
iii) uγwT = uT if |T | = 1

Remark 3.3 The Myerson graph restricted game can be viewed in the present
context as the special case in which all the weighs are equal to one, if we
interpret weights as capacities or intimacies, or equal to zero if we interpret
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them as costs or flows. Then, a direct consequence of previous propositions is
that, when R is connected in (N, γw) and wl = 1 for all l ∈ γ (wl = 0 for all
l ∈ γ, respectively), every coalition T ⊆ R receives the total dividend ∆v(T )
(i.e., αRT = 1) in the weighted-graph restricted game. And thus :

vγw(S) =
∑
R∈S|γ

vγw(R) =
∑
R∈S|γ

∑
T⊆R

∆v(T )αRT ({wl}) =
∑
R∈S|γ

∑
T⊆R

∆v(T ) =

=
∑
R∈S|γ

v(R) = vγ(S)

for all S ⊆ N , and then, in these cases the weighted-graph restricted game
coincides with the classical graph restricted game (Myerson, 1977).

Remark 3.4 If (N, γw) is a weighted network in which, for each l ∈ γ, wl
is interpreted as the probability of a direct relation between its two incident
nodes, and these probabilities are considered as independent (as in Calvo et
al., 1999) then, for R connected in γ and T ⊆ R:

αRT =
t(R)∑
i=1

∏
l∈ηT,Ri

wl −
∑
i<j

∏
l∈ηT,Ri

⋃
ηT,Rj

wl + · · ·+ (−1)t(R)+1
∏

l∈
⋃t(R)

j=1
ηT,Rj

wl,

for |T | ≥ 1, and αRT = 1, otherwise.

In this case, αRT can be interpreted as the probability of connecting T with
(independent) links between members of R selected with the described random
scheme.

3.3 Myerson values for weighted-graph restricted games

Definition 3.4 An allocation rule ψ on WCSN is a map ψ : WCSN → Rn,
ψi(N, v, γw) representing the outcome for player i in game (N, v) given the
restrictions in the communication imposed by the weighted graph (N, γw).

Definition 3.5 The Myerson value for c-weighted communication situations
is the allocation rule ψc defined on WCSN,c as ψc(N, v, γw) = Sh(N, vγw)

Analogously we can define the Myerson value ψd for d−weighted communica-
tion situation, the Myerson value ψf for f−weighted communication situations
and, of course, ψp that coincides with the probabilistic Myerson value of Calvo
et al. (1999) for p−weighted communication situations.

Remark 3.5 The classical Myerson value is the restriction of ψc to the set
of those c-weighted communication situations in which the capacities are all
equal to 1. Similarly, for ψd (ψf) and distances or costs (flows) equal to zero.
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3.4 Some Examples

Example 3.1 (Weights are distances or costs).

Let us consider the following weighted communication situation (N, v, γw)
in which N = {1, 2, 3, 4, 5}, v = u{1,3} and γw is given in the Figure 1.

2

31

45

wb = 0.5wa = 0.2

wf = 0.8

wc = 0.2we = 0.1

wd = 0.4

Figure 1.

We will assume that link weights are distances or costs and then, we will
calculate µd(N, v, γw). We have that MCG(N, {1, 3}, γw) = {η1 = {a, b}, η2 =
{c, d, e}, η3 = {f}} and thus:

uγw{13} = βη1uD(η1)+βη2uD(η2)+βη3uD(η3)−min{βη1 , βη2}uD(η1∪η2)−min{βη1 , βη3}uD(η1∪η3)−

−min{βη2 , βη3}uD(η2∪η3)+min{βη1 , βη2 , βη3}uD(η1∪η2∪η3) =
1

1 + 0.7
u{123}+

1

1 + 0.7
u{1345}+

+
1

1 + 0.8
u{13}−

1

1 + 0.7
u{12345}−

1

1 + 0.8
u{123}−

1

1 + 0.8
u{1345}+

1

1 + 0.8
u{12345}

5

and then

µd(N, v, γw) = Sh(N, uγw{13}) = (0.2903, 0.0044, 0.2903, 0.0016, 0.0016).

Example 3.2 (Weights are capacities).

5 We simplify the notation writing {13} instead of {1,3} and so on. Moreover, we
can see here a difference with the case of the Myerson restricted game. In that
case, if there are several alternative paths to connect 1 and 3 but these nodes
are directly connected, all the remaining paths are ignored. In this new approach,
this occurs only when the direct path is geodesic among all the possible paths.
Otherwise, the nodes in shorter paths are rewarded because their contribution to
the communication shortening the distance between 1 and 3
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Consider the following weighted communication situation (N, v, γw) ∈ WCSN,c
where N = {1, 2, 3, 4, 5}, v = u{1,3} and γw is given in the Figure 2.

2

31

45

wb = 0.5wa = 0.2

wf = 0.1

wc = 0.2we = 0.3

wd = 0.4

Figure 2.

We will calculate µc(N, v, γw), i.e., the value of different players when the game
is to connect players 1 and 3 taking into account the capacities of the existing
communication channels. Of course, MCG(N, {1, 3}, γw) coincides with the
one in the previous example and thus:

uγw{13} = βη1uD(η1)+βη2uD(η2)+βη3uD(η3)−min{βη1 , βη2}uD(η1∪η2)−min{βη1 , βη3}uD(η1∪η3)−

−min{βη2 , βη3}uD(η2∪η3)+min{βη1 , βη2 , βη3}uD(η1∪η2∪η3) = 0.2u{123}+0.2u{1345}+

+0.1u{13} − 0.2u{12345} − 0.1u{123} − 0.1u{1345} + 0.1u{12345}
6

and then

µc(N, v, γw) = Sh(N, uγw{13}) = (0.0883, 0.0133, 0.0883, 0.005, 0.005).

4 Characterizations of the weighted Myerson values

In this section we introduce two characterizations of the Myersons value for
weighted-graphs communication situations that generalize the corresponding
ones for the unweighted case.

6 We can see here too a difference with the case of the Myerson restricted game. In
that case, if there are several alternative paths to connect 1 and 3 but these nodes are
directly connected, all the remaining paths are ignored. In this new approach, this
occurs only when the direct path has the greatest capacity among all the possible
paths (the capacity of a path being the minimum of its links capacities).
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Definition 4.1 An allocation rule ψ defined on WCSN satisfies component
efficiency if, for all (N, v, γw) ∈ WCSN and for all C ∈ N\γ,∑

i∈C
ψi(N, v, γw) = vγw(C) for all i ∈ C.

Definition 4.2 An allocation rule ψ defined on WCSN satisfies fairness if,
for all (N, v, γw) ∈ WCSN and for all l = {i, j} ∈ γ,

ψi(N, v, γw)− ψi(N, v, γw\{l}) = ψj(N, v, γw)− ψj(N, v, γw\{l}).

Definition 4.3 An allocation rule ψ defined on WCSN satisfies the balanced
contributions property if, for all (N, v, γw) ∈ WCSN and for all i, j ∈ N,

ψi(N, v, γw)− ψi(N, v, γw−j) = ψj(N, v, γw)− ψj(N, v, γw−i).

Theorem 4.1 The Myerson value for c-weighted communication situations,
µc, is the unique allocation rule on WCSN,c satisfying component efficiency
and fairness.

Proof: First, we will prove that µc satisfies component efficiency. Let
(N, v, γw) ∈ WCSN,c. Given C ∈ N/γ we have∑
i∈C
µci(N, v, γw) =

∑
i∈C
µci(C, v|C , (γw)|C) =

∑
i∈C
Shi(C, (v|C)(γw)|C ) = (v|C)(γw)|C (C)

denoting (γw)|C = (γ|C)w|(γ|C )
and because of the Shapley value efficiency. But,

(v|C)(γw)|C (C) = (vγw)(C).

Second, we will prove that µc satisfies fairness. As it is obvious from def-
inition, µc is linear in the game, so it is sufficient to prove that µc satis-
fies fairness for weighted communication situation in WCSN,c of the form:
(N, uT , γw), with T ⊆ N . If MCG(T,N, γ) = {ηT1 , . . . , ηTt(N)}, then the char-
acteristic function uγwT is given by:

t(N)∑
i=1

βηTi uD(ηTi )
−
∑
i<j

min{βηTi , βηTj }uD(ηTi ∪η
T
j )

+ · · ·+

+(−1)t(N)−1 min
i=1,...,t(N)

{βηTi }uD(∪t(N)
i=1 ηTi )

and thus

µc(N, uT , γw) = Sh(
t(N)∑
i=1

βηTi uD(ηTi )
−
∑
i<j

min{βηTi , βηTj }uD(ηTi ∪η
T
j )

+ · · ·+

+(−1)t(N)−1 min
i=1,...,t(N)

{βηTi }uD(∪t(N)
i=1 ηTi )

).
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Suppose weighted link l = {i0, j0} is severed. Then

µc(N, uT , γw \ {l}) = Sh(
k∑
j=1

βηTij
uD(ηTij

) −
∑
j<r

min{βηTij , βηTir}uD(ηTij
∪ηTir )

+ . . .

+(−1)k+1 min
j=1,...,k

{βηTij }uD(
⋃k

j=1
ηTij

)
),

with MCG(T,N, γ \ {l}) = {ηTi1 , . . . , η
T
ik
} being a subset of MCG(T,N, γ).

Then the difference

µc(N, uT , γw)− µc(N, uT , γw \ {l})

is a linear combination of the Shapley value of games uD(η) with l = {i0, j0} ∈
η. In fact, each η is necessarily a union of minimal connection graphs of T in
(N, γ) in which, al least, one of them contains l. Of course, i0, j0 ∈ D(η) for
all these graphs η and because of the Shapley value symmetry the outcome of
both players i0 and j0 changes by the same amount.

Reciprocally, let us prove the uniqueness. Consider an allocation rule ψ defined
onWCSN,c and satisfying efficiency and fairness. We must prove that ψ = µc.
The proof uses induction on |γ|. If |γ| = 0, then each i ∈ N forms a component
in (N, γw), and then in (N, γ). As ψ satisfies efficiency in components, for all
i ∈ N , ψi(N, v, γw) = vγw({i}) = µci(N, v, γw) (last equality holding because
µc also satisfies component efficiency) and thus both allocation rules coincide.

Suppose now, by the induction hypothesis, that ψ(N, v, γw) = µc(N, v, γw)
for all weighted communication situations in WCSN,c with |γ| ≤ k and con-
sider (N, v, γw) ∈ WCSN,c with |γ| = k + 1. Let i ∈ N and let C(i) be the
class in the quotient set N/γw = N/γ = {C1, C2, ..., Ck} to which i belongs.
If C(i) = {i}, then similar as in the case |γ| = 0 above, by efficiency in
components ψi(N, v, γw) = vγw({i}) = µci(N, v, γw) and thus both rules co-
incide in i. Alternatively, suppose that |C(i)| > 1 and let j ∈ C(i), j 6= i.
By the definition of connected component, there exists a sequence of play-
ers i1 = i, i2, i3, ..., ir = j with il ∈ C(i) for l = 1, 2, ..., r and such that
{il, il+1} ∈ γ, for each l = 1, 2, ..., r − 1. As ψ satisfies fairness,

ψi1(N, v, γw)− ψi1(N, v, γw\{i1, i2}) = ψi2(N, v, γw)− ψi2(N, v, γw\{i1, i2}),

and thus:

ψi1(N, v, γw)− ψi2(N, v, γw) = ψi1(N, v, γw\{i1, i2})− ψi2(N, v, γw\{i1, i2}).

As |γ| ≤ k, using the induction hypothesis,
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ψi1(N, v, γw\{i1, i2}) = µci1(N, v, γw\{i1, i2}) and
ψi2(N, v, γw\{i1, i2}) = µci2(N, v, γw\{i1, i2})

and therefore:

ψi1(N, v, γw)− ψi2(N, v, γw) =
= ψi1(N, v, γw\{i1, i2})− ψi2(N, v, γw\{i1, i2}) = µci1(N, v, γw)− µci2(N, v, γw)

the last equality holding because µc satisfies the fairness property. As a con-
sequence, ψi1(N, v, γw)− µci1(N, v, γw) = ψi2(N, v, γw)− µci2(N, v, γw).

Iteratively using this previous reasoning, ψi(N, v, γw) − µci(N, v, γw) =
ψj(N, v, γw) − µcj(N, v, γw) for j ∈ C(i) and thus, there exists hC(i) ∈ R such
that ψj(N, v, γw)− µcj(N, v, γw) = hC(i) for all j ∈ C(i). Then,

|C(i)|hC(i) =
∑

j∈C(i)

[ψj(N, v, γw)− µcj(N, v, γw)] =∑
j∈C(i)

ψj(N, v, γw)−
∑

j∈C(i)

µcj(N, v, γw).

By component efficiency of both rules ψ and µc, this last expression is equal
to zero and thus, hC(i) = 0 = ψj(N, v, γw) − µcj(N, v, γw) for all j ∈ C(i) and
in particular for i, which completes the proof. �

Similarly we can prove the following results:

Theorem 4.2 The Myerson value for d-weighted communication situations,
µd, is the unique allocation rule on WCSN,d satisfying component efficiency
and fairness.

Theorem 4.3 The Myerson value for f-weighted communication situations,
µf , is the unique allocation rule on WCSN,f satisfying component efficiency
and fairness.

Theorem 4.4 (Calvo et al., 1999, Th.1, pp. 87-89) The Myerson value for
p-weighted communication situations, µp, is the unique allocation rule on
WCSN,p satisfying component efficiency and fairness.

The values µc, µd, µf and µp can be also characterized substituting the fairness
property by the balanced contributions one.

Theorem 4.5 The Myerson value for c-weighted communication situations,
µc, is the unique allocation rule on WCSN,c satisfying component efficiency
and balanced contributions.

Proof: It is already proved that µc satisfies component efficiency.

16



As µc is linear in the game, we only need to prove that µc satisfies balanced
contributions for weighted communication situation in WCSN,c of the form:
(N, uT , γw), with T ⊂ N . If MCG(T,N, γ) = {ηT1 , . . . , ηTt(N)}, then the char-
acteristic function uγwT is given by:

t(N)∑
i=1

βηTi uD(ηTi )
−
∑
i<j

min{βηTi , βηTj }uD(ηTi ∪η
T
j )

+· · ·+(−1)t(N)+1 min
i=1,...,t(N)

{βηTi }uD(
⋃t(N)

i=1
ηTi )

and thus

µc(N, uT , γw) = Sh(
t(N)∑
i=1

βηTi uD(ηTi )
−
∑
i<j

min{βηTi , βηTj }uD(ηTi ∪η
T
j )

+ · · ·+

+(−1)t(N)+1 min
i=1,...,t(N)

{βηTi }uD(
⋃t(N)

i=1
ηTi )

).

Suppose j0 becomes isolated, then the difference µci0(N, uT , γw) −
µci0(N, uT , γ

−j0
w ) is a linear combination of the Shapley value of games uD(η)

with i0, j0 ∈ D(η). If i0 becomes isolated, µcj0(N, uT , γw) − µcj0(N, uT , γ
−i0
w ) is

the same linear combination of the Shapley value of the same games uD(η)

with i0, j0 ∈ D(η). And by the symmetry of Shapley value these quantities
coincide.

The proof of the reciprocal mimics the one in Theorem 4.1 and so it is omitted.
�

Similarly we have:

Theorem 4.6 The Myerson value for d-weighted communication situations,
µd, is the unique allocation rule on WCSN,d satisfying component efficiency
and balanced contributions.

Theorem 4.7 The Myerson value for f-weighted communication situations,
µf , is the unique allocation rule on WCSN,f satisfying component efficiency
and balanced contributions.

Theorem 4.8 (Calvo et al., 1999, remark 4.1, p. 89) The Myerson value
for p-weighted communication situations, µp, is the unique allocation rule on
WCSN,p satisfying component efficiency and balanced contributions.

5 Stability

In this section we deal with the problem of determining the extent to which the
defined values satisfy (generalized) stability in the sense that if the underlying
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game is superadditive then, when varying the weight of a link, other things
been equal, the value of both incident nodes change in the appropriate way.

5.1 Stability of µc

Given a weighted communication situation (N, v, γw) ∈ WCSN,c we will as-
sociate to the weighted graph (N, γw) a set of real numbers xh and a set of
deterministic graphs (N, γh), h = 0, 1, ..., r, where r ≤ |γ| will be the num-
ber of different values among the weights of links in (N, γw). So let us define
x0 = 0, (N, γ0) = (N, γ) and for h = 1, 2, ..., r

xh = min
l∈γh−1

{wl} and γh = {l ∈ γ/wl > xh}.

In the following Lemma we prove that for weighted communication situations
in WCSN,c the weighted-graph restricted game can be written as a positive
linear combination of deterministic graph restricted games.

Lemma 5.1 Given (N, v, γw) ∈ WCSN,c with (N, v) a zero-normalized game,
it holds that

vγw =
r−1∑
h=0

(xh+1 − xh)vγh ,

where for h = 0, 1, ..., r − 1, vγh is the Myerson game associated to the deter-
ministic communication situation (N, v, γh).

Proof: Consider S ⊆ N and R ∈ S|γ, then

vγw(R) =
∑
T⊂R

∆v(T )αRT ,

with
αRT = max

i=1,...,t(R)
min
l∈ηT,Ri

{wl}, for |T | ≥ 1,

where {ηT,R1 , ηT,R2 , ..., ηT,Rt(R)} =MCG(T,R, γ) is the family of minimal connec-

tion graphs of T ⊆ R in (R, γ|R). Let {ηT,Ri1 , ηT,Ri2 , ..., ηT,Ria } be the subfamily of
MCG(T,R, γ) such that

αRT = min
l∈ηT,Rij

{wl} for j = 1, 2, ..., a.

To determine the coefficient that in
r−1∑
h=0

(xh+1 − xh)vγh(R) multiplies the divi-

dend ∆v(T ), let us consider

k = max
h

{
h/ it exists ηT,Rij with ηT,Rij ⊆ γh and ηT,Rij * γh+1 for all j = 1, .., a

}
.
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Then, that coefficient equals to wk+1 = min
l∈γk
{wl} and so we only need to prove

that αRT = wk+1. As it exists j∗ ∈ {1, 2, ..., a} such that ηT,Rij∗
⊆ γk, we have

wk+1 = min
l∈γk
{wl} ≤ min

l∈ηT,Rij

{wl} = αRT .

But if wk+1 < αRT then, for all l ∈ ηT,Rij∗
, wl > wk+1 which implies l ∈ ηT,Rij∗

⊆
γk+1. And this contradiction with the definition of k proves the result. �

Given a communication situation (N, v, γ), the graph-restricted game (N, vγ)
inherits the superadditivity of game v (Owen, 1986). So, as a direct conse-
quence of the previous lemma, we obtain the following result.

Corollary 5.1 If (N, v, γw) ∈ WCSN,c and (N, v) is a superadditive game,
then (N, vγw) is also superadditive.

Another consequence of the previous lemma is that we can calculate the Myer-
son value for c-weighted communication situations in terms of Myerson values
of appropriate deterministic communication situations. The proof is straight-
forward from previous Lemma and then it is omitted.

Proposition 5.1 Given (N, v, γw) ∈ WCSN,c with (N, v0) the zero-
normalization of (N, v), it holds that

µci(N, v, γw) =
r−1∑
h=0

(xh+1 − xh)µi(N, v0, γh) + v({i}) for all i = 1, ..., n,

where for h = 0, 1, ..., r− 1, µ(N, v, γh) is the Myerson value associated to the
deterministic communication situation (N, v, γ).

As a consequence of the following two lemmas we can establish the stability
of the Myerson value for c-weighted communication situations.

Lemma 5.2 Given (N, v, γw), (N, v, γw′) ∈ WCSN,c with v a superadditive
game and such that it exists l∗ = {i, j} ∈ γ with wl∗ < w′l∗ and wl = w′l for all
l ∈ γ, l 6= l∗, it holds that

µck(N, v, γw) ≤ µck(N, v, γw′) for k=i,j.

Proof: Changing wl∗ by w′l∗ > wl∗ some of the pairs (xh+1, γh) for h = 0, ..., r−
1 are modified. Suppose that wl∗ = xt with t < r (the case in which the
maximum weight, xr is increased is trivial) and let us consider six different
possibilities:

i) Several links have weight equal to wl∗ but w′l∗ < xt+1. In this case, in the
sequence (xh+1, γh) for h = 0, 1, ..., r − 1 the pair (xt+1, γt) gives rise to the
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pair (w′l∗ , γt ∪ {l∗}) and the (xt+1, γt) itself, all other couples remaining equal.
And so, for k = i, j,

µck(N, v, γw′)−µck(N, v, γw) = (w′l∗−xt)µk(N, v, γt∪{l∗})+(xt+1−w′l∗)µk(N, v, γt)−

−(xt+1 − xt)µk(N, v, γt) = (w′l∗ − xt)[µk(N, v, γt ∪ {l∗})− µk(N, v, γt)] ≥ 0

as for k = i, j, µk(N, v, γt ∪ {l∗}) ≥ µk(N, v, γt) because of the stability of the
Myerson value for deterministic communication situations.

ii) Several links have weight equal to wl∗ but w′l∗ = xt+1. Then, (xt+1, γt)
transforms in (xt+1, γt ∪ {l∗}), the other pairs being unchanged and thus, for
k = i, j,

µck(N, v, γw′)−µck(N, v, γw) = (xt+1−xt)[µk(N, v, γt∪{l∗})−µk(N, v, γt)] ≥ 0

again because of the stability of the Myerson value for deterministic commu-
nication situations.

iii) Several links have the same weight wl∗ but xt+1 < w′l∗ < xt+2. Then,
the two pairs (xt+1, γt) and (xt+2, γt+1) transforms in the three pairs (x′t+1 =
xt+1, γ

′
t = γt ∪ {l∗}), (x′t+2 = w′l∗ , γ

′
t+1 = γt+1 ∪ {l∗}) and (x′t+3 = xt+2, γ

′
t+2 =

γt+1), the rest of the pairs being transformed one to one. Then, for k = i, j,

µck(N, v, γw′)− µck(N, v, γw) =

= (x′t+1 − x′t)µk(N, v, γ′t) + (x′t+2 − x′t+1)µk(N, v, γ
′
t+1)+

+(x′t+3 − x′t+2)µk(N, v, γt+2)− (xt+1 − xt)µk(N, v, γt)−
−(xt+2 − xt+1)µk(N, v, γt+1) = (xt+1 − xt)µk(N, v, γt ∪ {l∗})+

+(w′l∗ − xt+1)µk(N, v, γt+1 ∪ {l∗}) + (xt+2 − w′l∗)µk(N, v, γt+1)−
−(xt+1 − xt)µk(N, v, γt)− (xt+2 − xt+1)µk(N, v, γt+1) ≥ 0

as, because of the stability of Myerson value for deterministic communication
situations, for k = i, j,

µk(N, v, γt ∪ {l∗}) ≥ µk(N, v, γt) and µk(N, v, γt+1 ∪ {l∗}) ≥ µk(N, v, γt+1).

iv) Only one link has weight equal to wl∗ and w′l∗ < xt+1. Then (xt, γt−1)
change to (x′t = w′l∗ , γ

′
t−1 = γt−1) and thus, for k = i, j,

µck(N, v, γw′)− µck(N, v, γw) =

= (x′t − x′t−1)µk(N, v, γ′t−1) + (x′t+1 − x′t)µk(N, v, γ′t)−
−(xt − xt−1)µk(N, v, γt−1)− (xt+1 − xt)µk(N, v, γt) =

= (w′l∗ − xt−1)µk(N, v, γt−1) + (xt+1 − w′l∗)µk(N, v, γt)−
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−(xt − xt−1)µk(N, v, γt−1)− (xt+1 − xt)µk(N, v, γt) =

= (w′l∗ − xt)[µk(N, v, γt−1)− µk(N, v, γt)] ≥ 0

because of γt = γt−1 \ {l∗} and the stability of Myerson value which implies
µk(N, v, γt−1) ≥ µk(N, v, γt) for k = i, j.

v) Only one link in γ has weight equal to wl∗ and w′l∗ = xt+1. In this case
(xt, γt−1) and (xt+1, γt = γt−1 \{l∗}) merge in (x′t = w′l∗ , γ

′
t−1 = γt−1) and thus,

for k = i, j,
µck(N, v, γw′)− µck(N, v, γw) =

= (x′t−x′t−1)µk(N, v, γ′t−1)−(xt−xt−1)µk(N, v, γt−1)−(xt+1−xt)µk(N, v, γt) =

= (xt+1−xt−1)µk(N, v, γt−1)−(xt−xt−1)µk(N, v, γt−1)−(xt+1−xt)µk(N, v, γt−1\{l∗}) =

= (xt+1 − xt)[µk(N, v, γt−1)− µk(N, v, γt−1 \ {l∗})].
which is nonnegative as the stability of the Myerson value implies that
µk(N, v, γt−1 \ {l∗}) ≤ µk(N, v, γt−1) for k = i, j.

vi) No other link has weight equal to wl∗ and xt+1 < w′l∗ < xt+2. Then,
the pairs (xt, γt−1) and (xt+1, γt) transforms respectively in (xt+1, γt−1) and
(w′l∗ , γt = γt+1 ∪ {l∗}) and thus, for k = i, j,

µck(N, v, γw′)− µck(N, v, γw) =

= (xt+1−xt−1)µk(N, v, γt−1)+(w′l∗−xt+1)µk(N, v, γ
′
t)+(xt+2−w′l∗)µk(N, v, γt+1)−

−(xt−xt−1)µk(N, v, γt−1)−(xt+1−xt)µk(N, v, γt)−(xt+2−xt+1)µk(N, v, γt+1) =

= (xt+1−xt−1)µk(N, v, γt−1)−[(xt−xt−1)µk(N, v, γt−1)+(xt+1−xt)µk(N, v, γt = γt−1\{l∗})]+
+(w′l∗−xt+1)µk(N, v, γ

′
t = γt+1∪{l∗})+(xt+2−w′l∗)µk(N, v, γt+1)−(xt+2−xt+1)µk(N, v, γt+1) =

= (xt+1 − xt)[µk(N, v, γt−1)− µk(N, v, γt = γt−1 \ {l∗})]+
+(w′l∗ − xt+1)[µk(N, v, γt+1 ∪ {l∗})− µk(N, v, γt+1)].

which is nonnegative because of the stability of Myerson value which implies
that for k = i, j, µk(N, v, γt) = µk(N, v, γt−1 \ {l∗}) ≤ µk(N, v, γt−1) and
µk(N, v, γt+1) ≤ µk(N, v, γ

′
t) = µk(N, v, γt+1 ∪ {l∗}). �

Lemma 5.3 Given (N, v, γw), (N, v, (γ ∪ {l∗})w′) ∈ WCSN,c with w′l = wl for
all l ∈ γ and v being a superadditive game, then, if l∗ = {i, j}, it holds that

µck(N, v, γw) ≤ µck(N, v, (γ ∪ {l∗})w′) for k=i,j.

Proof: The proof is similar to the previous one (but shorter) and so it is
omitted. �

Theorem 5.1 The Myerson value for c-weighted communication situations,
µc, is stable, i.e., if the underlying game is superadditive, adding a new
weighted link to a weighted graph or increasing the capacity of an existing
link the value of both incident nodes does not decrease.

Proof: The result follows iteratively applying both previous lemmas. �
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5.2 Stability of µf

The proof of the stability of µf mimics the previous one on the stability of
µc, but associating now to each graph (N, γw) in a communication situation
(N, v, γw) ∈ WCSN,f the set of real numbers xh and the set of deterministic
graphs (N, γh) for h = 0, . . . , r defined by x0 = 0, (N, γ0) = (N, γ) and for
h = 1, . . . r

xh = min
l∈γh−1

{
1

1 + wl

}
and γh = {l ∈ γ/ 1

1+wl
> xh}. Then, we have:

Lemma 5.4 Given (N, v, γw) ∈ WCSN,f with (N, v) a zero-normalized game,
it holds that

vγw =
r−1∑
h=0

(xh+1 − xh)vγh

where for h = 0, 1, ..., r − 1, vγh is the Myerson game associated to the deter-
ministic communication situation (N, v, γh).

A direct consequence of the previous lemma is the following corollary.

Corollary 5.2 If (N, v, γw) ∈ WCSN,f and (N, v) is a superadditive game,
then (N, vγw) is also superadditive.

Similarly, next proposition is straightforward from previous lemma.

Proposition 5.2 Given (N, v, γw) ∈ WCSN,f with (N, v0) the zero-
normalization of (N, v), it holds that

µfi (N, v, γw) =
r−1∑
h=0

(xh+1 − xh)µi(N, v0, γh) + v({i}) for all i = 1, ..., n

where for h = 0, 1, ..., r− 1, µ(N, v, γh) is the Myerson value associated to the
deterministic communication situation (N, v, γ).

Lemma 5.5 Given (N, v, γw), (N, v, γw′) ∈ WCSN,f with v a superadditive
game and such that it exists l∗ = {i, j} ∈ γ with wl∗ < w′l∗ and wl = w′l for all
l ∈ γ, l 6= l∗ it holds that

µfk(N, v, γw) ≥ µfk(N, v, γw′) for k=i,j.

Theorem 5.2 The Myerson value for f-weighted communication situations,
µf , is stable, i.e., if the underlying game is superadditive, increasing the flow
of an existing link, the value of both incident nodes does not increase.
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5.3 Stability of µd

Unfortunately, the proof of stability obtained for the cases µc and µf does
not hold for µd and it remains as an open problem. Nevertheless, the result is
easily proved if we strength the requirement on the game to be almost positive
(all dividends non negative).

Theorem 5.3 The Myerson value for d-weighted communication situations,
µd, is weakly stable, i.e., if the underlying game is almost positive, increasing
the distance or cost of an existing link the value of both incident nodes does
not increase.

Proof: Given (N, v, γw) ∈ WCSN,d the weighted-graph restricted game is
defined for each S ⊆ R as::

vγw(S) =
∑
R∈S|γ

vγw(R)

where for all R ∈ S|γ,

vγw(R) =
∑
T⊂R

∆v(T )αRT ({wl}),

with:

αRT = max
i=1,...,t(R)

{ 1

1 +
∑

l∈ηT,Ri

wl
}, for |T | ≥ 1, and αRT = 1, otherwise.

If the weighted communication situation (N, v, γw) becomes (N, v, γw′) with
l∗ = {i, j} ∈ γ such that w′l∗ > wl∗ and w′l = wl for all l 6= l∗ then, for k = i, j,
and all S ⊆ N \ {k}, vγw′ (S ∪ {k}) ≤ vγw(S ∪ {k}) and vγw′ (S) = vγw(S) hold
and thus:

µdk(N, v, γw′) = Shk(N, v
γw′ ) ≤ Shk(N, v

γw) = µdk(N, v, γw).

�

6 Conclusions and final remarks

So far we have generalized the Myerson value to the framework in which di-
rect relations among actors are not dichotomous but fuzzy or weighted. As
the associated weight of a link can admit different meanings, we have adapted
the definition of the graph restricted game to take into account these differ-
ent interpretations. Then, the Shapley value of these weighted-graph games
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is used to obtain point solutions for different players. Classical properties and
characterizations of Myerson value are translated to the extent possible. We
have analyze the extent to which the stability of the Myerson value for deter-
ministic communication situations holds in this new framework. The stabil-
ity property is satisfied for weighted communication situations in which the
weights represent links capacities, intensity in the relations or flow. But when
we assume that weights measure distances or costs, the hypothesis of superad-
ditivity must be strengthened to almost positivity. In the way to obtain these
results we have proved that µc and µf can be calculated in terms of a linear
combination of the Myerson values of certain deterministic communication
situations.

The obtained results permit us to rank nodes in a weighted graph using a
game theoretical approach. For weighted graphs representing social networks
with different levels of intimacy in the relations among actors, the defined
value can be used to obtain a family of centrality measures for such actors.
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